UNIVERSIDAD PRIVADA DE TACNA

ESCUELA DE POSGRADO

MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN

ESTRUCTURAS

DESEMPEÑO SÍSMICO MEDIANTE EL ANÁLISIS ESTÁTICO NO LINEAL PUSHOVER Y TIEMPO HISTORIA COMO MÉTODO DE EVALUACIÓN RÁPIDA EN LOS PROYECTOS DE SALUD EN AYACUCHO, 2024

TESIS

Presentada por:

Bach. Heber Jorge Valenzuela ORCID: 0000-0003-4971-0751

Asesor:

Mg. José Martín Velásquez Vargas ORCID: 0000-0002-6338-7455

Para obtener el grado académico de:

MAESTRO EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS

TACNA – PERÚ

2024

ii

UNIVERSIDAD PRIVADA DE TACNA

ESCUELA DE POSGRADO

MAESTRÍA EN INGENIERÍA CIVIL CON MENCIÓN EN

ESTRUCTURAS

DESEMPEÑO SÍSMICO MEDIANTE EL ANÁLISIS ESTÁTICO NO LINEAL PUSHOVER Y TIEMPO HISTORIA COMO MÉTODO DE EVALUACIÓN RÁPIDA EN LOS PROYECTOS DE SALUD EN AYACUCHO, 2024

TESIS

Presentada por:

Bach. Heber Jorge Valenzuela ORCID: 0000-0003-4971-0751

Asesor:

Mg. José Martín Velásquez Vargas ORCID: 0000-0002-6338-7455

Para obtener el grado académico de:

MAESTRO EN INGENIERÍA CIVIL CON MENCIÓN EN ESTRUCTURAS

TACNA – PERÚ

2024

UNIVERSIDAD PRIVADA DE TACNA ESCUELA DE POSGRADO MAESTRÍA EN INGENIERIA CIVIL

Tesis

DESEMPEÑO SÍSMICO MEDIANTE EL ANÁLISIS ESTÁTICO NO LINEAL PUSHOVER Y TIEMPO HISTORIA COMO MÉTODO DE EVALUACIÓN RÁPIDA EN LOS PROYECTOS DE SALUD EN AYACUCHO, 2024.

Presentada por:

Bach. Heber Jorge Valenzuela

Tesis sustentada y aprobada el 02 de noviembre del 2024; ante el siguiente jurado examinador:

PRESIDENTE: Mtra. Dina Marlene COTRADO FLORES.

SECRETARIO: Mtro. Edgar Hipólito CHAPARRO QUISPE.

VOCAL: Dr. Genner Alvarito VILLARREAL CASTRO.

ASESOR: Mg. José M. VELÁSQUEZ VARGAS.

DECLARACIÓN JURADA DE ORIGINALIDAD

Yo Heber Jorge Valenzuela, en calidad de: maestrando de la Maestría en Ingeniería Civil de la Escuela de Postgrado de la Universidad Privada de Tacna, identificado (a) con DNI 41211607 Soy autor (a) de la tesis titulada: DESEMPEÑO SÍSMICO MEDIANTE EL ANÁLISIS ESTÁTICO NO LINEAL PUSHOVER Y TIEMPO HISTORIA COMO MÉTODO DE EVALUACIÓN RÁPIDA EN LOS PROYECTOS DE SALUD EN AYACUCHO, 2024., con asesor(a): **Mg. José M. VELÁSQUEZ VARGAS.**

DECLARO BAJO JURAMENTO

Ser el único autor del texto entregado para obtener el grado académico de Maestro en Ingeniería Civil con mención en Estructuras, y que tal texto no ha sido entregado ni total ni parcialmente para obtención de un grado académico en ninguna otra universidad o instituto, ni ha sido publicado anteriormente para cualquier otro fin. Así mismo, declaro no haber trasgredido ninguna norma universitaria con respecto al plagio ni a las leyes establecidas que protegen la propiedad intelectual. Declaro, que después de la revisión de la tesis con el software Turnitin se declara 19% de similitud, además que el archivo entregado en formato PDF corresponde

Por último, declaro que para la recopilación de datos se ha solicitado la autorización respectiva a la empresa u organización, evidenciándose que la información presentada es real y soy conocedor (a) de las sanciones penales en caso de infringir las leyes del

exactamente al texto digital que presento junto al mismo.

plagio y de falsa declaración, y que firmo la presente con pleno uso de mis facultades y asumiendo todas las responsabilidades de ella derivada.

Por lo expuesto, mediante la presente asumo frente a LA UNIVERSIDAD cualquier responsabilidad que pudiera derivarse por la autoría, originalidad y veracidad del contenido de la tesis, así como por los derechos sobre la obra o invención presentada. En consecuencia, me hago responsable frente a LA UNIVERSIDAD y a terceros, de cualquier daño que pudiera ocasionar, por el incumplimiento de lo declarado o que pudiera encontrar como causa del trabajo presentado, asumiendo todas las cargas pecuniarias que pudieran derivarse de ello en favor de terceros con motivo de acciones, reclamaciones o conflictos derivados del incumplimiento de lo declarado o las que encontrasen causa en el contenido de la tesis, libro o invento. De identificarse fraude, piratería, plagio, falsificación o que el trabajo de investigación haya sido publicado anteriormente; asumo las consecuencias y sanciones que de mi acción se deriven, sometiéndome a la normatividad vigente de la Universidad Privada de Tacna.

Tacna, 02 de noviembre 2024.

Heber Jorge Valenzuela DNI: 41211607

Dedicatoria

Dedicado a nuestro Divino Dios y a mis hermanos Richard Jorge Valenzuela y Marisol Jorge Valenzuela que guían mi vida desde el cielo, a mis Padres por su amor y a mi pareja Pamela por ser mi equipo soporte para cumplir mi Meta.

Agradecimiento

Mi gratitud a la Dirección de la Escuela de Posgrado en Estructuras de la Universidad Privada de Tacna, mi agradecimiento a cada docente de la Maestría que con su enseñanza constituyeron una base integral en mi vida Profesional.

Índice de contenidos

Carátula de la tesis	i	
Página de respeto	i	
Carátula interior	iii	
Página del jurado	iii	
Declaración de originalidad	v	
Dedicatoria	vii	
Agradecimiento	viii	
Índice de contenidos	ix	
Índice de tablas	XV	
Índice de figuras	xvi	
Resumen	xxviii	
Abstract	xxix	
Introducción	XXX	
Capítulo I. El Problema		
1.1 Planteamiento del Problema	32	
1.2 Formulación del Problema	33	
1.2.1 Problema General	33	
1.2.2 Problema Específicos	33	
1.3 Justificación de la Investigación	34	
1.3.1 Técnica	34	
1.3.2 Científica	34	
1.3.3 Social	34	
1.4 Objetivos de la Investigación	34	

1.4.1 Objetivos Generales.	34
1.4.2 Objetivos Específicos.	35
Capítulo II. Marco Teórico	
2.1 Antecedentes de la Investigación	36
2.2 Bases Teóricas	40
2.2.1 Procedimiento del análisis sísmico inelástico	40
2.2.2 Modelo Estructural	40
2.2.3 Características del movimiento sísmico del suelo	41
2.2.4 Relación entre un sistema de varios gdl y de un gdl.	42
2.2.5 Espectro de capacidad (Propuesto por Fajfar, 1999)	43
2.2.6 Evolución en el tiempo del diseño por desempeño sísmico	46
2.2.7 Opciones para el análisis inelástico	46
2.2.8 Parámetros iniciales	48
2.2.9 Análisis Pushover	51
2.2.10 Niveles de desempeño en el Análisis de Pushover	58
2.2.11 Análisis Tiempo Historia	65
2.2.12 Niveles de Amenaza Sísmica para el Tiempo Historia	69
2.3 Definición de Conceptos	70

2.3.1 Filosofía de Diseño Sismorresistente	70
2.3.2 Análisis Estático lineal	70
2.3.3 Análisis Dinámico lineal	70
2.3.4 Espectro de demanda	71
2.3.5 Análisis Estático No Lineal.	71
2.3.6 Análisis Dinámico No Lineal	71
2.3.7 Material elástico	71
2.3.8 Material inelástico	71
2.3.9 Linealidad	72
2.3.10 No linealidad	72
2.3.11 No Linealidad física	72
2.3.12 No Linealidad del Material	72
2.3.13 Deriva de piso	72
2.3.14 Distribución de las fuerzas sísmicas de diseño	72
2.3.15 Modos naturales de Vibración	73
2.3.16 Rótula Plástica	73
2.3.17 Momento Curvatura y Momento rotación.	73
2.3.18 Generación de Diagrama Momento Curvatura	73

2.3.19 Longitud Plástica	74	
Capítulo III. Marco Metodológico		
3.1 Hipótesis	75	
3.1.1 Hipótesis General	75	
3.1.2 Hipótesis Específicas	75	
3.2 Operacionalización de Variables	75	
3.2.1 Variable independiente.	75	
3.2.2 Variable dependiente.	76	
3.3 Enfoque de investigación	76	
3.4 Tipo de investigación	76	
3.5 Nivel de investigación	76	
3.6 Diseño de investigación	77	
3.7 Método de la investigación	77	
3.8 Población y muestra	77	
3.8.1 Población	77	
3.8.2 Muestra.	78	
3.9 Técnicas de recolección de los datos	78	
3.10 Instrumentos de recolección de los datos	78	

3.11 Análisis e interpretación de los datos	79
3.12 Procedimiento	79
Capítulo IV. Resultados	
4.1 Descripción del trabajo de Campo realizada en el C.S. Conchopat	a 81
4.2 Diseño de la presentación de los resultados	84
4.2.1 Descripción de la edificación del C.S. Conchopata	84
4.2.2 Estructuración y predimensionamiento en C.S. Conchopata	86
4.2.3 Metrado de cargas de la edificación del C.S. Conchopata	90
4.2.4 Modelo estructural del C.S. Conchopata	90
4.2.5 Análisis Sisimico del C.S. Conchopata	91
4.2.6 P. fundamental de vibración de la estructura del C.S. Concho	pata 91
4.2.7 Análisis sísmico estático del C.S. Conchopata	93
4.2.8 Análisis dinámico del C.S. Conchopata	96
4.2.9 Fuerza cortante dinámica en la base del C.S. Conchopata	98
4.2.10 Verificación del sistema estructural del C.S. Conchopata	100
4.2.11 Verificación de derivas de entrepiso del C.S. Conchopata	103
4.2.12 Verificación de torsión en planta del C.S. Conchopata	105
4.2.13 Junta sísmica del C.S. Conchopata	107

4.2.14 Análisis de materiales del C.S. Conchopata	111
4.2.15 MNL para secciones y elementos del C.S. Conchopata	115
4.2.16 La Curva Capacidad del Análisis Pushover	123
4.2.17 Características del Análisis Pushover	124
4.2.18 Procedimiento de Análisis de Pushover	125
4.2.19 Método de los coeficientes de desplazamiento, FEMA 356	126
4.2.20 Método del espectro de capacidad, ATC-40	129
4.2.21 Método De Coeficientes de desplazamientos, FEMA 356	129
4.2.22 Cálculo del peso sísmico del C.S. Conchopata	130
4.2.23 Cálculo de la distribución de fuerzas del C.S. de Conchopata	132
4.2.24 M. Coef. de desplazamiento (FEMA 356) del C.S. Conchopata	ι 140
4.2.25 D. Simplificado Momento Rotación del C.S. Conchopata	148
4.2.26 Resultados de las rótulas plásticas del C.S. Conchopata	163
4.2.27 Curva de Capacidad	164
4.2.28 Niveles de Amenaza Sísmica - Espectros de Demanda	167
4.2.29 Curva de potencia en espectro de potencia	173
4.2.30 Respuesta Elástica de Estructuras	179
4.2.31 Respuesta Inelástica de Estructuras	179

4.2.32 Punto de desempeño	182
4.2.33 Desplazamiento Objetivo	193
4.3 Resultados	214
Resultados de Análisis No lineal Pushover	214
Resultados del Análisis T. Historia lineal	220
Resultados del Análisis T. Historia No lineal	226
4.4 Prueba Estadística	226
4.5 Comprobación de Hipótesis	226
4.6 Discusión de Resultados	229
Conclusiones	232
Recomendaciones	
Referencias	
Apéndice	

Índice de tablas

Tabla 1	Descripción de los niveles para los E.E y E.N.E según ATC-40	58
Tabla 2	Descripción de los niveles para los E.E y E.N.E por Visión 2000	61
Tabla 3	Peso por piso de la estructura	93
Tabla 4	Fuerzas por piso de la estructura	94
Tabla 5	Cortante en el eje X	101
Tabla 6	Cortante en el eje Y	103

Índice de figuras

Figura 1 Análisis Pushover	32
Figura 2 Paso a paso de Curva Capacidad	33
Figura 3 Procedimiento para un análisis inelástico	40
Figura 4 Modelo estructural inelástico 3D-FEMA 440	41
Figura 5 Factores que afectan y caracterizaciones de los sismos	42
Figura 6 Gráfica de mgdl y sistema 1gdl	42
Figura 7 Curva V-Dt elastoplástica, del análisis Pushover	44
Figura 8 Espectro de Capacidad y de Demanda	45
Figura 9 Evolución del diseño basado en desempeño	46
Figura 10 Cinco opciones para Análisis no lineal según FEMA	47
Figura 11 Modelo de esf. /deformación de C° confinado y no confinado	48
Figura 12 Modelo de histéresis de Takeda	49
Figura 13 Curva esfuerzo/deformación del acero sometido a tensión	49
Figura 14 Modelo de histéresis cinemático	50
Figura 15 Modelo de rótula plástica según FEMA 356	52
Figura 16 Espectro de Capacidad y de demanda método ATC-40	53
Figura 17 Espectro de capacidad mét. de los coef. de desplazamiento	54
Figura 18 Espectro de capacidad ATC 40	55
Figura 19 Curva idealizada fuerza desplazamiento	56
Figura 20 Curva Capacidad de una estructura obtenida de CSI ETABS	57

Figura 21	Punto de desempeño ATC-40	57
Figura 22	Niveles de desempeño propuestos en el ATC-40	58
Figura 23	Tabla de valores para derivas de piso propuesta por el ATC-40	59
Figura 24	Niveles de desempeño propuestos por SEAOC Visión 2000	60
Figura 25	Daños relacionados con los parámetros de demanda	61
Figura 26	Tabla de valores límites propuestos por SEAOC Visión 2000.	62
Figura 27	Niveles de sismo de diseño vs niveles de desempeño Visión 2000	63
Figura 28	Niveles de desempeño y desplazamientos SEAOC Visión 2000	64
Figura 29	Niveles de desempeño propuesto por SEAOC Visión 2000	64
Figura 30	Métodos de análisis en el dominio del tiempo	65
Figura 31	Estructura del C.S. Conchopata-combinación SRSS	66
Figura 32	Gráfica de combinación del SRSS	67
Figura 33	Imagen de la portada de la Norma E.030 sismorresistente	67
Figura 34	Registro sísmico compatible	68
Figura 35	Registro sísmico ANLTH	68
Figura 36	Niveles de amenaza sísmica propuesto por VISIÓN 2000	69
Figura 37	Niveles de amenaza sísmica propuesta del ATC-40	69
Figura 38	Recolección de datos del C.S. Conchopata	81
Figura 39	Vista frontal del actual C.S. Conchopata	82
Figura 40	Fachada del actual C.S. Conchopata	82
Figura 41	Tomas fotográficas prospección mediante calicata	83
Figura 42	El Render 3D del Nuevo Proyecto del C.S. de Conchopata	84

Figura 43 Planos de planta-Arquitectura	85
Figura 44 Planos de techo-sótano	86
Figura 45 Estructuración y Predimensionamiento vista frontal 1	87
Figura 46 Estructuración y Predimensionamiento vista frontal 2	88
Figura 47 Estructuración y Predimensionamiento vista frontal 3	88
Figura 48 Estructuración y Predimensionamiento vista frontal 4	89
Figura 49 Periodo fundamental de vibración de la estructura	91
Figura 50 Principales Participaciones Modales en el X, Y y Z	92
Figura 51 Parámetros sísmicos	94
Figura 52 Definiendo patrones de carga en la dirección X	95
Figura 53 Definiendo patrones de carga en la dirección Y	95
Figura 54 Reacciones en la Base de la Estructura	96
Figura 55 Definiendo patrones de carga-análisis seudodinámico	97
Figura 56 Definiendo patrones sismo seudodinámico en X	97
Figura 57 Definiendo patrones sismo seudodinámico en Y	98
Figura 58 Fuerzas cortantes dinámicas en la base	99
Figura 59 Fuerzas cortantes dinámicas en la base en el eje X y Y	99
Figura 60 Reacciones en la base con los factores de escala para el d	iseño 100
Figura 61 Verificando el sistema estructural en el eje X	100
Figura 62 Corte en la base del C.S. Conchopata en XX	101
Figura 63 Verificando el sistema estructural en el eje Y	102
Figura 64 Corte en la base del C.S. Conchopata en YY	102

Figura 65	Verificando Deriva de entrepiso en X y Y	103
Figura 66	Derivas por piso en eje X	104
Figura 67	Derivas por piso en eje Y	104
Figura 68	Máxima deriva de piso en X	104
Figura 69	Máxima deriva de piso en Y	105
Figura 70	Diagrama de verificación de torsión en planta en el eje X	106
Figura 71	Diagrama de verificación de torsión en planta en el eje Y	106
Figura 72	Diagrama de verificación de piso blando	106
Figura 73	Junta sísmica	107
Figura 74	Combinaciones más envolventes	107
Figura 75	Verificando los warning	108
Figura 76	Configurando código de D.Sismorresistente del ACI 318-08	108
Figura 77	Diseño de acero en la estructura	109
Figura 78	Cuantía de refuerzo en los entrepisos	110
Figura 79	Modelos de idealización Esfuerzo-Deformación del Acero	111
Figura 80	Concreto No Confinado-Modelo de Hognestad	112
Figura 81	Concreto Confinado- Modelo de Kent y Park	113
Figura 82	Concreto Confinado Modelo de Mander	114
Figura 83	Momento Curvatura y Ductilidad-Viga simplemente Reforzado	115
Figura 84	Momento Curvatura y Ductilidad-Viga con Doble Refuerzo	117
Figura 85	Longitud Plástica - Rotación y Deflexión Máxima	118
Figura 86	Deformación Máxima y Ductilidad - Momento Rotación	119

Figura 87 Gráfica de deformación última análisis Pushover	123
Figura 88 Gráfica de Curva de capacidad (ASCE/SEI 41-13)	126
Figura 89 Grupo 1: a) Fuerzas proporcional a CV	127
Figura 90 Grupo 1: b) Fuerzas proporcional al modo fundamental	127
Figura 91 Grupo 1: c) Fuerzas proporcional de fuerzas de piso	128
Figura 92 Grupo 2: d) Fuerzas proporcional a la masa total por nivel	128
Figura 93 Fuerzas al producto entre la masa y f. modal 1	129
Figura 94 Peso sísmico	130
Figura 95 Peso sísmico por niveles del ETABS	130
Figura 96 Peso sísmico por nivel y peso acumulado	131
Figura 97 Fuerzas por piso del sismo dinámico en X	132
Figura 98 Fuerzas por piso del sismo dinámico en Y	132
Figura 99 Fuerzas por piso por el caso participación modal	132
Figura 100 Fuerzas por piso por carga muerta	133
Figura 101 Grupo 1: a) Distribución F. proporcional a CV en el eje X	134
Figura 102 Grupo 1: b) Distrib. F. proporcional a F.M.F eje X	134
Figura 103 Grupo 1: c) Distrib. Proporcional a la Distr. F de piso eje X	135
Figura 104 Grupo 2: d) Distrib. de F. proporcional a la masa eje X	135
Figura 105 Cargas laterales, entre la masa y forma modal 1 en el eje X	136
Figura 106 Patrón de fuerzas laterales en la dirección X-AENL	136
Figura 107 Grupo 1: a) Distrib. F. proporcional a CV en el eje Y	137
Figura 108 Grupo 1: b) Distrib. F. proporcional a F.M.F en el eje Y	138

Figura 109	Grupo 1: c) Distrib. Proporcional a fuerzas de piso en el eje H	/138
Figura 110	Grupo 2: d) Distrib. de F. proporcional a la masa del eje Y	139
Figura 111	Cargas laterales, entre la masa y forma modal 1 en el eje Y	139
Figura 112	Patrón de fuerzas laterales en la dirección Y-AENL	140
Figura 113	Método el G1 e ingreso de las fuerzas laterales en X y Y	140
Figura 114	Método el G1 e ingreso de las fuerzas laterales en X	141
Figura 115	Método el G1 e ingreso de las fuerzas laterales en Y	141
Figura 116	Fuerzas laterales en la estructura en el eje X	142
Figura 117	Fuerzas laterales en la estructura en el eje Y	142
Figura 118	Caso de Carga Gravitacional No lineales de la estructura	143
Figura 119	Caso de Carga Gravitacional No lineales de la estructura	143
Figura 120	Datos del caso de carga PUSH X	144
Figura 121	Datos del caso de carga PUSH Y	144
Figura 122	Aplicación de control de cargas del AENL dirección X	145
Figura 123	Aplicación de control de cargas del AENL dirección Y	146
Figura 124	Definiendo la combinación de carga y el envolvente PUSH	147
Figura 125	Definiendo los datos de combinación de carga ENVOL.PUSH	147
Figura 126	Def. de las rótulas en vigas parte 1	148
Figura 127	Def. de las rótulas en vigas parte 2	149
Figura 128	Def. de las rótulas en vigas parte 3	150
Figura 129	Def. de las rótulas en vigas parte 4	151
Figura 130	Rótulas P. en vigas en los niveles de la estructura.	152

Figura 131	Asignación de datos de rótulas en vigas	152
Figura 132	Criterios de aceptación numérica en vigas	153
Figura 133	Datos de propiedades para rótula B454H1-Momento M3	153
Figura 134	Rótulas P. en columnas en los niveles de la estructura	154
Figura 135	Rótulas P. en vigas en los niveles de la estructura	154
Figura 136	Datos de asignación de rótulas plásticas en columnas	155
Figura 137	Criterios de aceptación numérica en columnas	155
Figura 138	Propiedades para rótula C1H1-interacción P-M2-M3	156
Figura 139	Rótulas en muros estructurales en los niveles de la estructura	157
Figura 140	Asignación de rótulas plásticas en muros	157
Figura 141	Criterios de aceptación numéricos en muros estructurales	158
Figura 142	Gráfica de momento rotación de vigas	159
Figura 143	Gráfica de momento rotación de vigas y columnas	160
Figura 144	Gráfica de momento rotación de muros estructurales	161
Figura 145	Resultados final del ingreso de rótulas plásticas	162
Figura 146	Rótulas plásticas todos los niveles de la estructura	162
Figura 147	Respuestas para rótula B454H14	163
Figura 148	Respuestas para rótula C142H3	164
Figura 149	Curva capacidad idealizada (ASCE/SEI 41-13, 2014)	165
Figura 150	Curva de capacidad dirección X-X	165
Figura 151	Cortante vs Monitoreo de desplaz. en la dirección X	166
Figura 152	Curva de capacidad dirección Y-Y	166

Figura 153	Cortante vs Monitoreo de desplaz. en la dirección Y	167
Figura 154	Nivel de amenaza sísmica según Visión 2000	169
Figura 155	Nivel de amenaza sísmica según ASCE-SEI 41-13	170
Figura 156	Nivel de amenaza sísmica según ATC-40	171
Figura 157	Espectr. de demanda Visión 2000	172
Figura 158	Espectr. de demanda ATC-40	172
Figura 159	Espectr. de demanda ASCE-SEI-41-13	173
Figura 160	Conversión Curva de capacidad a formato ADRS-ATC-40	174
Figura 161	Gráfica cortante vs desplazamiento-dirección X-ETABS	175
Figura 162	Gráfica formato ADRS (Sa-Sd) en la dirección X de ETABS	175
Figura 163	Gráfica Cortante-Desplazamiento en la dirección Y de ETAB	\$176
Figura 164	Gráfica formato ADRS (Sa-Sd) en la dirección Y de ETABS	176
Figura 165	Espectro curva capacidad dirección X	177
Figura 166	Espectro curva capacidad dirección Y	177
Figura 167	Conversión del Espectr.Rta a formato ADRS, ATC-40	178
Figura 168	Rpta elástica de estructuras	179
Figura 169	Rpta inelástica de Estructuras, ATC-40	180
Figura 170	Espectros de demanda Visión 2000	181
Figura 171	Gráficas de espectros de demanda Visión 2000	182
Figura 172	Punto de Desempeño Estructural	183
Figura 173	Espectr. Rta modificado MADRS con Tsec, FEMA 440	186
Figura 174	Desplaz. Estimado-Iteración Directa Proced. A	188

Figura 175 Desplaz. Máximo Estimado-Iteración Directa Proced. B	189
Figura 176 Desplaz. Máximo Estimado-Iteración Directa Proced. C	190
Figura 177 Coef. de amortiguamiento efectiva parte 1	190
Figura 178 Coef. de amortiguamiento efectiva parte 2	191
Figura 179 Curva idealizada fuerza-desplazamiento (FEMA 440, 2005	5) 193
Figura 180 Resultados del desplazamiento PUSH en el eje X	195
Figura 181 Generaciones de las primeras rótulas plásticas en el eje X	195
Figura 182 Resultados del desplazamiento PUSH en el eje Y	198
Figura 183 Generaciones de las primeras rótulas plásticas en el eje Y	199
Figura 184 P.D FEMA 440 para un sismo de diseño frecuente en X	200
Figura 185 P.DFEMA 440 para un sismo de diseño ocasional en X	201
Figura 186 P.DFEMA 440 para un sismo de diseño raro en X	201
Figura 187 P.DFEMA 440 para un sismo de diseño muy raro en X	202
Figura 188 P.D FEMA 440 para un sismo de diseño frecuente en Y	202
Figura 189 P.DFEMA 440 para un sismo de diseño ocasional en Y	203
Figura 190 P.D FEMA 440 para un sismo de diseño raro en Y	203
Figura 191 P.DFEMA 440 para un sismo de diseño muy raro en Y	204
Figura 192 P.DASCE 41-13 para un sismo de diseño frecuente en X	204
Figura 193 P.DASCE 41-13 para un sismo de diseño ocasional en X	205
Figura 194 P.DASCE 41-13 para un sismo de diseño raro en X	205
Figura 195 P.D ASCE 41-13 para un sismo de diseño muy raro en X	206
Figura 196 P.DASCE 41-13 para un sismo de diseño frecuente en Y	206

Figura 197 P.DASCE 41-13 para un sismo de diseño ocasional en 2	Y 207
Figura 198 P.DASCE 41-13 para un sismo de diseño raro en Y	207
Figura 199 P.DASCE 41-13 para un sismo de diseño muy raro en Y	208
Figura 200 Registros para el T.H. Red Acelerográfica del CISMID	208
Figura 201 Series de tiempo	209
Figura 202 Aplicando la corrección de la línea base y filtro	209
Figura 203 Espectro Amplitud según Fourier	210
Figura 204 Respuesta espectral elástica/inelástica	210
Figura 205 Parámetros de movimiento del suelo	211
Figura 206 Sismo escalado Ica 2007-NS	211
Figura 207 Sismo escalado Ica 2007-EW	212
Figura 208 Sismo escalado Lima 1996-NS	212
Figura 209 Sismo escalado Lima 1996-EW	213
Figura 210 Sismo escalado Lima 1974-NS	213
Figura 211 Sismo escalado Lima 1974-EW	213
Figura 212 Nivel de desempeño VISION 2000 - Dirección X-X	214
Figura 213 Nivel de desempeño VISION 2000 - Dirección Y-Y	215
Figura 214 Nivel de desempeño ASCE-SEI41-13 - Dirección X-X	216
Figura 215 Nivel de desempeño ASCE-SEI41-13 - Dirección Y-Y	217
Figura 216 Nivel de desempeño ATC40 - Dirección X-X	218
Figura 217 Nivel de desempeño ATC40 - Dirección Y-Y	219
Figura 218 Definición de casos de carga para ATHL	220

Figura 219 Datos de carga para el sismo Lima 1966 para el ATHL	220
Figura 220 Datos de carga para el sismo Lima 1974 para el ATHL	220
Figura 221 Datos de carga para el sismo Ica 2007 para el ATHL	221
Figura 222 Ingreso de datos de carga para el R=1, ATHL	221
Figura 223 Resultados del Análisis Tiempo Historia Lineal en XX	221
Figura 224 Resultados del Análisis Tiempo Historia Lineal en YY	222
Figura 225 Determinando el Sismo para el Diseño en el ATHNL en .	X y Y 222
Figura 226 Sismo X, Casos de carga para Análisis THNL	223
Figura 227 Sismo X, ATHNL	223
Figura 228 Pseudo Spectral aceleration PSA en X, ATHNL	224
Figura 229 Sismo Y, Casos de carga para Análisis THNL	224
Figura 230 Sismo Y, ATHNL	225
Figura 231 Pseudo Spectral aceleration PSA en Y, ATHNL	225
Figura 232 Resultados de Análisis tiempo historia No lineal	226
Figura 233 Prueba de Kolmogórov-Smirnov para una muestra	227
Figura 234 Rangos promedio de los desplazamientos	227
Figura 235 Estadísticos de prueba	227
Figura 236 Operacionalización de Variables	243
Figura 237 Matriz de consistencia	244
Figura 238 Plano de ubicación de calicatas	246
Figura 239 Plano en planta y secciones AA-BB	247
Figura 240 Plano Perfil estratigráficos AA-BB	248

Figura 241	Plano Geológico Local de Ayacucho	249
Figura 242	Tomas fotográficas de la exploración de suelos	250

Resumen

La tesis tiene como objetivo principal evaluar el desempeño sísmico del Centro de Salud de Conchopata en Ayacucho, utilizando el análisis estático no lineal pushover y el análisis tiempo historia para determinar su comportamiento ante diferentes niveles de amenaza sísmica. El alcance de la investigación se centra en el análisis estructural del mencionado centro de salud, aplicando métodos que permiten una evaluación rápida y efectiva. La metodología empleada incluye el modelamiento en el software ETABS, análisis estático y dinámico, y la utilización de modelos constitutivos no lineales para el concreto y el acero, así como el cálculo del punto de desempeño mediante métodos del espectro de capacidad y coeficientes de desplazamiento. Los resultados alcanzados revelan que la estructura cumplió con los niveles de desempeño y objetivos para el sismo de diseño según la VISIÓN 2000, ASCE/SEI 41-13 y el ATC 40, evidenciando un comportamiento adecuado ante solicitaciones sísmicas. En conclusión, el centro de salud de Conchopata, constituido con pórticos de concreto armado, ha logrado un desempeño sísmico ACEPTABLE en ambas direcciones (X, Y) según la norma peruana E.030 y los códigos de diseño del FEMA. Donde su capacidad estructural del C.S. de Conchopata NO fue superada por la demanda en ambas direcciones de análisis (X, Y). La rigidez lateral aumentó significativamente con el reforzamiento de la estructura; reduciendo el tiempo de vibración y las derivas máximas de piso; cumpliéndose con los objetivos de desempeño para la estructura del C.S. de Conchopata, adicional a ello, como complemento y a manera de comparación se realizó el análisis Tiempo Historia en la estructura del C.S. de Conchopata. Finalmente recomendamos la aplicación de la investigación en el análisis de Desempeño Sísmico de Centros de Salud mediante el Análisis Estático no lineal Pushover y Tiempo Historia como método de evaluación rápida.

Palabra clave: Sismo de diseño, Espectro de capacidad, Curvas de capacidad, Niveles de amenaza sísmica, Pushover y Tiempo Historia.

The main objective of this thesis is to evaluate the seismic performance of the Conchopata Health Center in Ayacucho, using nonlinear static pushover analysis and time history analysis to determine its behavior under different levels of seismic threat. The scope of the research focuses on the structural analysis of the aforementioned health center, applying methods that allow a rapid and effective evaluation. The methodology used includes modeling in the ETABS software, static and dynamic analysis, and the use of nonlinear constitutive models for concrete and steel, as well as the calculation of the performance point using capacity spectrum methods and displacement coefficients. The results obtained reveal that the structure met the performance levels and objectives for the design earthquake according to VISION 2000, ASCE/SEI 41-13 and ATC 40, evidencing adequate behavior under seismic loads. In conclusion, the Conchopata Health Center, made up of reinforced concrete frames, has achieved ACCEPTABLE seismic performance in both directions (X, Y) according to the Peruvian standard E.030 and the FEMA design codes. Where its structural capacity of the Conchopata S.C. was NOT exceeded by the demand in both analysis directions (X, Y). The lateral stiffness increased significantly with the reinforcement of the structure; reducing the vibration time and the maximum floor drifts; meeting the performance objectives for the structure of the Conchopata S.C. In addition, as a complement and for comparison, the Time History analysis was carried out on the structure of the Conchopata S.C. Finally, we recommend the application of the research in the analysis of Seismic Performance of Health Centers through the Nonlinear Static Pushover Analysis and Time History as a rapid evaluation method. **Keyword:** Design earthquake, Capacity spectrum, Capacity curves,

Seismic hazard levels, Pushover and Time History.

Introducción

En zonas sísmicas como Ayacucho, el desempeño sísmico de estructuras es de vital importancia, especialmente en proyectos de salud donde la seguridad, la resiliencia y estabilidad ante eventos sísmicos son cruciales. En este contexto, se plantea la necesidad de utilizar metodologías avanzadas como el A.E. No lineal Push Over y tiempo historia para evaluar de manera precisa la capacidad de respuesta de los edificios de salud ante sismos.

El presente estudio tiene como propósito principal verificar el nivel de desempeño sísmico en proyectos de salud en Ayacucho mediante el A.E. No lineal Push Over y tiempo historia como métodos de evaluación rápida. Para lograr este propósito, se plantean objetivos específicos que incluyen la definición de la linealidad y no linealidad física los materiales, la determinación de la Curva de Capacidad con el método Push Over, el análisis del espectro de capacidad con el método tiempo historia, entre otros aspectos fundamentales.

La relevancia de este estudio radica en la necesidad de garantizar la seguridad de las estructuras de salud en zonas sísmicas, como Ayacucho, donde la vulnerabilidad ante eventos sísmicos puede tener consecuencias devastadoras. Al establecer niveles de desempeño sísmico y utilizar metodologías avanzadas de evaluación, se busca mejorar la resiliencia de los edificios de salud y proteger la vida de quienes dependen de estos servicios.

La tesis se encuentra estructurada en varios capítulos permitiéndonos abordar de manera sistemática y coherente el análisis del desempeño sísmico del C.S. de Conchopata y se presenta de la forma siguiente. En el **Capítulo I**, se presenta el problema, incluyendo su formulación y justificación, así como los objetivos generales y específicos de la investigación. El **Capítulo II** se dedica al marco teórico, donde se revisan antecedentes relevantes, se definen conceptos clave y se explican las bases teóricas del AENL y del ATH. En el **Capítulo III**, se detalla el marco metodológico, que incluye la hipótesis de la investigación, la operacionalización de variables, así como las técnicas e instrumentos de recolección de datos. Finalmente, el **Capítulo IV** presenta los resultados obtenidos, la discusión de los mismos, y las conclusiones y recomendaciones pertinentes.

Capítulo I. El Problema

1.1 Planteamiento del Problema

La técnica más precisa, pero extremadamente compleja es el ADNL, ya que considera todo tipo de No linealidad además que requiere datos históricos de movimientos del suelo en el tiempo para simular el efecto dinámico, la obtención de estos datos muchas veces es un impedimento para la aplicación del análisis no lineal de muchas regiones del Perú, Ayacucho no es ajeno a ello. Sin embargo, ante ello se presenta la técnica Pushover estático No lineal una alternativa técnica, directa, rápida para resolver los problemas de desempeño en los proyectos de salud en Ayacucho, 2024, permitiéndonos conocer el comportamiento último de los materiales usados en la edificación de manera más eficiente y con ello estimar su capacidad y ductilidad de la estructura de la forma más real posible.

Figura 1

Análisis Pushover

Nota. Análisis Pushover (Suwondo & Alama, 2020)

Figura 2

Paso a paso de Curva Capacidad

Nota. Curva Capacidad (Suwondo & Alama, 2020)

1.2 Formulación del Problema

1.2.1 Problema General

 ¿Cuál es el nivel de desempeño sísmico mediante el análisis estático No lineal Push Over y Tiempo historia como método de evaluación rápida en los proyectos de salud en Ayacucho, 2024?

1.2.2 Problema Específicos

- ¿De qué manera la linealidad, No linealidad física de materiales en los proyectos de salud en Ayacucho, será un factor determinante en el análisis por desempeño sísmico en los proyectos de salud en Ayacucho, ¿2024?
- ¿Sera posible elaborar Curva Capacidad con el Mét. no lineal de Push Over en los proyectos de salud en Ayacucho, 2024?
- ¿Sera posible determinar el punto de Desempeño de Curva Capacidad con el método no lineal Push Over como método de estimación en los proyectos de salud en Ayacucho, 2024?

 ¿Sera posible establecer los niveles de desempeño de Curva Capacidad con el Mét. no lineal de Push Over en la evaluación por desempeño sísmico en los proyectos de salud en Ayacucho, 2024?

1.3 Justificación de la Investigación

1.3.1 Técnica

 Con el uso de la metodología de A.E. No lineal Push Over y la historia del tiempo, El propósito de esta investigación es evaluar el nivel de desempeño estructural de un edificio fundamental propuesto como Proyecto para un centro de salud en Ayacucho.

1.3.2 Científica

• Proponer incluir una metodología que incluya estándares y parámetros para el análisis estático no lineal incremental basado en análisis práctico de rendimiento transitorio.

1.3.3 Social

 Porque al desarrollar una metodología de predicción del comportamiento sísmico de una estructura significativa, no solo mejoramos el comportamiento de las estructuras ante un evento sísmico, sino que también optimizamos los materiales utilizados en el diseño de estas estructuras. Como resultado, el diseño se vuelve más efectivo y realista.

1.4 Objetivos de la Investigación

1.4.1 Objetivos Generales.

 Verificar el nivel de desempeño sísmico mediante el A.E. No lineal Push Over y Tiempo historia como método de evaluación rápida en los proyectos de salud en Ayacucho, 2024.

1.4.2 Objetivos Específicos.

- Definir la linealidad, no linealidad física los materiales como diseño estructural convencional en los proyectos de salud en Ayacucho, 2024.
- Elaborar la Curva Capacidad con el método no lineal de Push Over en los proyectos de salud en Ayacucho, 2024.
- Determinar el punto de desempeño de Curva Capacidad con el Mét. no lineal de Push Over y el tiempo histórico como método estimación en los proyectos de salud en Ayacucho, 2024.
- Establecer los niveles de desempeño de Curva Capacidad con el Mét. No lineal de Push Over en los proyectos de salud en Ayacucho, 2024.

Capítulo II. Marco Teórico

2.1 Antecedentes de la Investigación

(John et al., 2020) Las evaluaciones en esta investigación denominada: "Análisis Pushover para diseño sísmico basado en desempeño" que presenta una sencilla técnica de análisis Pushover basada en computadora para el diseño basado en el desempeño de estructuras de edificios sujetas a cargas sísmicas. La técnica se basa en el método de desplazamiento convencional del análisis elástico. Mediante el uso de un "factor de plasticidad" que mide el grado de plastificación, las matrices de rigidez elástica y geométrica estándar para elementos de estructura (vigas, columnas, etc.) se modifican progresivamente para tener en cuenta el comportamiento elastoplástico no lineal bajo cargas de gravedad constantes y cargas laterales que aumentan de forma incremental. El modelo de comportamiento tiene en cuenta la inelasticidad del material debido a estados de tensión individuales y combinados, y proporciona la capacidad de monitorear la plastificación progresiva de elementos de estructura y sistemas estructurales bajo una intensidad creciente de movimiento del suelo por terremoto.

(Pierre & Hidayat, 2020) En su investigación denominada: "Comportamiento sísmico de estructuras de hormigón armado con análisis Pushover" presenta un edificio propenso a colapsar bajo la carga sísmica. Cuando ocurre un terremoto, el estado del comportamiento del edificio de inelástico, por ello que se propone evaluaciones para estimar la condición de inelasticidad en edificios. Los terremotos se analizan mediante análisis de tensión no estática y el comportamiento de colapso de la estructura en suelo con alta sismicidad. El programa utilizado para su desarrollo fue el software SAP 2000 utilizada para el análisis y evaluación de estructuras no elásticas. El desplazamiento total y la presión negativa total obtenida como resultados en las direcciones X e Y están en la categoría de nivel constante (IO) (el valor máximo del desplazamiento del edificio 0,00047 < 0,005).
(Handana et al., 2020) El método utilizado en su investigación: "Evaluación del desempeño de la estructura del edificio existente con análisis Pushover" fue sin duda el Análisis Pushover, en la gestión de la infraestructura de la construcción, durante el período de construcción de los edificios, los daños comunes a los edificios como resultado de varias razones, son comunes los terremotos. El edificio está planeado para funcionar durante una cierta vida útil. Pero durante cierta vida útil, el edificio es vulnerable a daños debido a varias cosas. Cualquier daño al cultivo se puede detectar lo antes posible, porque el daño podría propagarse, desencadenar y agravar el último. El concepto más nuevo de ingeniería sísmica es la ingeniería sísmica basada en el rendimiento (PBEE). PBEE se divide en dos, a saber, el diseño sísmico basado en el rendimiento (PBSD) y la evaluación sísmica basada en el rendimiento (PBSE). La evaluación en PBSE es uno de los cuales es el análisis de empuje no lineal. El análisis de empuje es un AENL donde la influencia del plan de terremoto en la estructura del edificio se considera como cargas estáticas atrapadas en el C.M. de cada piso, que se aumentaron gradualmente hasta que la carga provocó la fusión (bisagra plástica) primero dentro de la estructura del edificio, luego la carga aumenta aún más los cambios de formas de gran tamaño postclásicos hasta alcanzar la condición de elástico. Luego siguió la fusión (bisagra de plástico) en el lugar de la otra estructura.

(Saeid Foroughi a, 2020) En este estudio denominado: "Investigación del comportamiento no lineal de muros de corte de hormigón armado de alta ductilidad", el comportamiento NLM de cortante de Hormigón Armado dúctil (RC) se investigaron analíticamente diferentes parámetros. El propósito de este Estudio es determinar la relación de refuerzo longitudinal y las relaciones de refuerzo transversal. Relaciones momento-curvatura y fuerza lateral-desplazamiento máximo lateral de muros de cortante de hormigón armado.

(Li et al., 2020) Los Métodos de Diseño Sísmico basados en su investigación: "Comparación de análisis dinámicos y de empuje estático utilizando un experimento de mesa vibratoria en un edificio de hormigón armado", respaldan la filosofía de D.S. basada en el rendimiento conocida como la teoría de diseño sísmico más avanzada. Este artículo explora un tipo común de puentes irregulares-continuos y estudia la predicción de su demanda de desplazamiento elastoplástico, se basa en un nuevo método estático no lineal. Para lograr la operación de diseño sísmico basado en desplazamiento, existen ventajas. Se analizan tres puentes continuos irregulares para avanzar en el sistema SDOF equivalente, construir el Espec. de Capacidad y el Espec. inelástico, y generar el nuevo AENL. El enfoque propuesto se utiliza para simplificar la predicción de la demanda de desplazamiento elastoplástico y se valida mediante análisis paramétrico. El nuevo procedimiento ENL también se utiliza para lograr el procedimiento de diseño sísmico basado en el desplazamiento. Se prueba con un ejemplo para obtener resultados que muestran que después de varias combinaciones del Espectro de Capacidad (obtenido mediante un Análisis Pushover) y el Espec. de demanda inelástica, se puede lograr el diseño sísmico simplificado basado en el desplazamiento de los puentes continuos irregulares comunes. Mediante este diseño, el Perjuicio Sísmico en las estructuras se controla de manera efectiva.

(Inamasu & Lignos, 2022) En su investigación denominada: "Modelado de elementos finitos y comportamiento de conexiones de bases de columnas empotradas disipativas bajo carga cíclica". Las observaciones de terremotos anteriores indican que las bases de columnas empotradas (ECB) en marcos de acero resistentes a momentos (MRF) exhibieron deformaciones inelásticas mientras estaban diseñadas para no disipar. En consecuencia, la cantidad de daño inelástico concentrado en las respectivas columnas MRF de acero de extremo fijo se alivió un poco. Acortamiento axial de columna Marcos de acero resistentes a momento estabilidad de la columna. Esta interacción no lineal se examina mediante simulaciones paramétricas de elementos finitos continuos (CFE) de dimensiones mixtas validadas con los datos experimentales disponibles a gran escala. Los parámetros examinados son la resistencia máxima a la flexión del ECB, su capacidad de deformación plástica y su rigidez elástica.

(Hammal et al., 2020) La predicción de la demanda sísmica no lineal propuesta de investigación denominada: "Predicción de espectros de respuesta inelástica basada en redes neuronales" para un nivel de peligro dado sigue siendo una tarea desafiante para la evaluación del riesgo sísmico. Este artículo presenta un modelo de predicción del movimiento del suelo (GMPE) para la estimación eficiente de los Espectros de Respuesta inelástica de sistemas de un 1gdl (SDOF) amortiguados al 5%, con comportamiento histérico elástico perfectamente plástico en términos de parámetros sismológicos y propiedades estructurales. El modelo se desarrolló utilizando una red neuronal artificial (ANN) con un algoritmo de aprendizaje de retro propagación (BP), por medio de 200 registros recopilados de la base de datos KiK-Net. El modelo propuesto genera un espectro de respuesta inelástica expresado por 21 valores de amplitudes de desplazamiento para un conjunto de entrada compuesto por tres parámetros del sismo: magnitud del momento, profundidad y distancia de la fuente al sitio; un parámetro del sitio, la velocidad de la onda de corte; y un parámetro estructural, el factor de reducción de resistencia. El desempeño del modelo de red neuronal muestra una buena concordancia entre los valores predichos y calculados de los espectros de respuesta inelástica

(Norman & Calmunger, 2021) propone en su investigación: "Un método de evaluación de la fluencia acelerada basado en la partición de deformación inelástica y pruebas de velocidad de deformación lenta ", propone y evalúa un nuevo método de evaluación de fluencia acelerada para evaluar el rendimiento de fluencia de metales y aleaciones a partir de ensayos de tracción a alta temperatura, es decir, ensayo de tasa de deformación lenta (SSRT). El método consiste en descomponer la deformación inelástica en una componente plástica y de fluencia mediante la adopción de supuestos generales sobre el comportamiento de deformación inelástica de los materiales, formulados utilizando un formalismo de variable de estado y verificados mediante ensayos de tracción con tiempos de permanencia intermedios a tensión constante.

2.2 Bases Teóricas

2.2.1 Procedimiento del análisis sísmico inelástico

El análisis sísmico inelástico se utiliza en la evaluación y diseño de estructuras para predecir su comportamiento ante futuros sismos y de esta manera estimar la cantidad de deformación y deflexión. El diseño por desempeño describe el daño de los componentes estructurales y no estructurales. El nivel de detalle del modelo estructural y la señal sísmica determina la diferencia que existe entre los distintos tipos de análisis no lineal.

Figura 3

Procedimiento para un análisis inelástico

Nota. FEMA 440-Procedimiento para un análisis inelástico

2.2.2 Modelo Estructural

El modelo estructural escogido depende de los requisitos de diseño sísmico, el tipo de estructura, la ubicación del proyecto, los códigos y criterios de diseño sísmico.

Figura 4

Modelo estructural inelástico 3D-FEMA 440

Nota. FEMA 440-Modelo estructural inelástico 3D

2.2.3 Características del movimiento sísmico del suelo

La amplitud, la fase y el contenido de frecuencia se ven afectados por las características del origen de un terremoto (magnitud, mecanismo de ruptura, orientación del plano de falla con respecto al sitio). Además, la atenuación, que ocurre cuando las ondas sísmicas se propagan a través de la roca desde el origen hasta el sitio, y los efectos locales del sitio, afectan las características del temblor. La Figura 5 ilustra cómo el tipo de temblor del suelo se ve afectado por la fuente, la atenuación y los efectos del sitio. Esto se puede ver en los registros de movimiento del suelo, así como en los gráficos de aceleración, velocidad y desplazamiento en función del tiempo de un punto en la superficie del suelo. Los espectros son una forma de registrar el movimiento del suelo.

Figura 5

Factores que afectan y caracterizaciones de los sismos

Nota. FEMA 440-Factores que afectan y caracterizaciones de los sismos

2.2.4 Relación entre un sistema de varios gdl y de un gdl.

Los sistemas de 1gdl se utilizan para aproximar el análisis de los sistemas de múltiples gdl (mgdl) que responden no sólo en la región elástica sino también en la inelástica. La altura H y el desplazamiento del techo $\delta(t)$, la frecuencia circular ω y el procedimiento mostrado en la Figura 6 para el sistema mgdl están relacionados con el sistema 1gdl correspondiente marcado con "*". Esto sugiere el uso de una estructura apropiada de 1gdl para aproximar el análisis de respuesta inelástica del edificio.

Figura 6

Gráfica de mgdl y sistema 1gdl

Nota. Estructura de 1gdl equivalente para analizar de manera aproximada la respuesta inelástica de un edificio (Saiidi y Sozen, 1981).

2.2.5 Espectro de capacidad (Propuesto por Fajfar, 1999)

El método que relaciona:

 $Q = \Gamma Q^*$ Donde: Masa de un sistema de 1gdl=m* Desplazamiento=D* Resistencia=F* Parámetros del Sistema de 1gdl= Q* Parámetros del Sistema de varios grados de libertad (mgdl) = Q

Cortante Basal = V

El método supone que el período base y la flexibilidad total del desplazamiento del edificio es igual al período de desplazamiento y la flexibilidad del correspondiente sist. de un solo 1gdl.

En el análisis Pushover las fuerzas laterales por nivel, que representan a las fuerzas inerciales por sismo, siga la forma de vector:

$$\{\mathbf{R}(t)\} = [\mathbf{M}] \{ \emptyset \} \mathbf{A}(t)$$
 (1)

 Γ =factor de participación equivalente:

$$\Gamma = \frac{\Sigma m i \Sigma \emptyset}{\Sigma m i \Sigma \emptyset^2} \tag{2}$$

m* =masa del sistema de 1gdl equivalente:

$$\mathbf{m}^* = \sum_{i=1}^n mi \, \emptyset i \tag{3}$$

Análisis Pushover de la edificación se obtiene la curva cortante basal desplazamiento de la azotea, V-Dt, como se muestra en la Figura 7.

Figura 7

Curva V-Dt elastoplástica, del análisis Pushover

Nota. Curva Cortante Basal desplazamiento de la azotea, V-Dt-Análisis Pushover (Saiidi y Sozen, 1981).

El siguiente paso del mét. es representar la curva de desplazamiento como una curva elastoplástica. Para hacerlo más simple, se ignora el endurecimiento por deformación. Por otra parte, es que los códigos de diseño sísmico utilizan estos tipos de curvas para determinar el espectro de diseño. El límite elástico Fy* y el desplazamiento elástico Dy correspondientes del sistema Q*, como se muestra en la Figura 7, se obtienen de la curva elástico-plástica anterior usando la ecuación (1), es decir, dividir Vy por Γ y Dy, entre Γ .

T * del sistema de 1gdl, es equivalente:

$$T^* = 2\pi \sqrt{\frac{m * D *}{F *}} \tag{4}$$

Los requisitos de resistencia deberían expresarse preferentemente como espectros de respuesta inelástica y compararse con las curvas de capacidad. Para hacer esto, la fuerza F* debe distribuirse en la curva de capacidad F*-D* del sistema 1gdl correspondiente, como se muestra en la Figura 8, la demanda inelástica en forma de aceleración y desplazamiento corresponde a la intersección de los espectros de capacidad y demanda, donde se deben cumplir las siguientes condiciones:

$$D^* = \mu D_y^* \tag{5}$$

Además, dado que las relaciones Sa y Sd corresponden al período T en la región elástica, la pendiente de rigidez inicial de la curva de capacidad que se muestra en la Fig. 8 le corresponde el periodo T indicado en el mismo.

Figura 8

Espectro de Capacidad y de Demanda

Nota. Espectro de Capacidad y de Demanda (Saiidi y Sozen, 1981).

2.2.6 Evolución en el tiempo del diseño por desempeño sísmico

El proceso de evolución de las normativas en el diseño por desempeño sísmico es como sigue:

Figura 9

Evolución del diseño basado en desempeño

Nota. Imagen generada por la empresa DIESCON ingenieros

2.2.7 Opciones para el análisis inelástico

Una variedad de combinaciones de tipos de modelos estructurales y caracterizaciones de movimiento sísmico dan como resultado una amplia gama de opciones para el análisis inelástico. El propósito del análisis, los objetivos de desempeño, el nivel aceptable de incertidumbre, la disponibilidad de recursos y la suficiencia de datos son factores que afectan la decisión. Por lo tanto, adicional al análisis Pushover se realizó el análisis Tiempo Historia en la estructura del C.S. de Conchopata como complemento y a manera de como comparación.

Figura 10

Cinco opciones para Análisis no lineal según FEMA

Nota. Imagen generada por la empresa DIESCON ingenieros

2.2.8 Parámetros iniciales

Concreto. Las columnas de concreto reforzadas tienen rótulas plásticas, por lo que el refuerzo debe ser suave para asegurar la redistribución de momento y evitar el colapso durante un sismo. El diseño debe proporcionar suficiente refuerzo transversal para evitar el pandeo de las barras longitudinales y las fallas por corte. rótulas plásticas se forman en las columnas de concreto reforzadas, por lo que el refuerzo debe ser suave para garantizar la redistribución de momento y así evitar el colapso durante un sismo. Para evitar el pandeo de las barras longitudinales y las fallas por corte, el diseño debe proporcionar suficiente refuerzo transversal.

Figura 11

Nota. A.J.B. Mander, M.J.N. Priestley, and R. Park, Fellow, 1988.

Modelo de histéresis de Takeda. El modelo de Takeda es muy similar al cinemático, pero usa una curva de histéresis degradada, no necesita muchos parámetros y funciona mejor con el concreto que con el metal. El modelo cinemático requiere menos energía que otros modelos. La descarga ocurre a lo largo de los segmentos elásticos, como en el modelo cinemático. Al cargar nuevamente, la curva sigue una línea secante a la curva de carga en la dirección opuesta. Cuando se produce la máxima deformación en esa dirección durante los ciclos de carga previos, este secante se activa. Esto causa deformaciones significativas y una reducción en la disipación de energía.

Figura 12

Nota. Computers and Structure-Modelo de histéresis de Takeda

Acero. El modelo de Park utiliza la curva de esfuerzo/deformación a tensión del acero y toma en cuenta las zonas de fluencia, elástica lineal y endurecimiento por deformación, donde el acero recupera su resistencia a cargas.

Figura 13

Curva esfuerzo/deformación del acero sometido a tensión

Nota. Curva esfuerzo/deformación del acero sometido a tensión de T. Paulay y R. Park, Reinforced Concrete Structure. 1975.

Modelo de histéresis cinemático. El modelo cinemático disipa mucha energía y funciona bien con materiales dúctiles. La deformación plástica se mueve de una dirección a la curva en la otra dirección bajo las reglas del endurecimiento cinemático. Al cargar y descargar, la curva sigue un patrón de segmentos paralelos de la misma longitud que los segmentos cargados anteriormente y sus pares opuestos. Al cargar en la otra dirección, se vuelve a juntar con el patrón de la curva.

Figura 14

Modelo de histéresis cinemático

Nota. Computers and Structure-Modelo de histéresis cinemático

2.2.9 Análisis Pushover

Para el análisis sísmico de estructuras, el método de empuje incremental (pushover) es un cálculo estático no lineal. El cálculo dinámico de cargas equivalentes proporciona el patrón de cargas. Hasta que la estructura falle completamente, estas cargas aumentan de manera constante.

Formación de rótulas plásticas. Para obtener la Rpta No lineal de una estructura, la región no lineal también debe incluir sus elementos. En este estudio, los elementos lineales (vigas y/o columnas) quedarán marcados en el análisis Pushover y por tanto su rigidez se irá deteriorando hasta, que el elemento pierda su capacidad portante. En el diagrama de pandeo de la unidad de análisis, la rótula pasa por diferentes regiones lineales, iniciando con una rigidez lineal inicial y terminando con una etapa donde la rigidez disminuye, donde comienza a degradarse con daño e incluso puede colapsar, todo relacionado a los momentos y giros experimentados, creadas por el primero. Las partes del diagrama son las siguientes:

- A-B: El área elástica desde que se descarga el elemento hasta que cede.
- B-C: Rpta inelástica pero lineal donde se reduce la rigidez.
- C-D: la resistencia de carga disminuye.
- **D-E:** Continuar la reducción desde el punto anterior.
- E-F: Pérdida total de resistencia.

Los estados de desempeño como Ocupación inmediata (IO), Seguridad humana (LS) y Prevención de colapso (CP) se identifican en línea en BC. En el primer caso, el daño es menor y es seguro reutilizar la estructura, en el segundo caso, el daño es bastante grave y la rigidez de algunos componentes disminuye, en el tercer caso, existe el riesgo de que algunos componentes se dañen por completo, colapso total o parcial del edificio no es seguro para vivir nuevamente. Algunos autores dividen el apartado en 4 partes y ponen los ptos en el orden anterior, otros consideran 10%, 60% y 90% respectivamente. FEMA 356 (2000) dividió la sección del 80% BC en tercios para determinar la condición de falla, estimando que la falla ocurrirá después del 80% de la sección.

Figura 15

Modelo de rótula plástica según FEMA 356

Nota. Estado de las rótulas plásticas bajo acción de momentos. Extraído de (Svetlana y Sherstobitoff, 2004, p. 11).

Cálculo de demanda. En el enfoque de desempeño estructural, la estimación de la demanda se define en el procedimiento de comparar el Espectro de Capacidad de la estructura con el Espectro de Demanda sísmica. Este cálculo tiene como objetivo determinar el desplazamiento máximo o pto de desempeño en el que la capacidad estructural y el requisito de resistencia sísmica son iguales. Esta ecuación estima la respuesta máxima de un edificio, lo cual es esencial para estimar el nivel esperado de desempeño estructural durante un evento sísmico. Los métodos más usados para el cálculo del pto de desempeño son:

- Espectro de Capacidad.
- Coeficientes de Desplazamiento.

Método de Espectro de Capacidad (MEC Propuesto por Freeman, 1975). Definido en ATC-40 y posteriormente aclarado por FEMA 440, proporciona un procedimiento simple para determinar el punto de desempeño de una estructura cuando se somete a acción sísmica. La determinación del punto de rendimiento requiere un proceso iterativo en el que el espectro de potencia se compara inicialmente con el espectro de demanda caracterizado por el espectro de respuesta elástica utilizando una atenuación del 5 %, y luego el espectro de demanda se ajusta continuamente para tener en cuenta la reducción de los factores de rendimiento.

Compatible con disipación de energía histerética o amortiguación efectiva asociada al punto de desplazamiento alcanzado en cada paso. Es necesario trazar el ADRS en formato de "espectro de respuesta de aceleración-desplazamiento", donde la demanda y la potencia se pueden convertir en aceler. y desplaz. Espectral (Sa vs Sd).

Figura 16

Espectro de Capacidad y de demanda método ATC-40

Nota. Documento ATC-40 y FEMA 440

Método de los Coeficientes de desplazamiento (MCD). Fue definido originalmente por FEMA 356, refinado por FEMA 440 y adoptado por ASCE 41-13 para estimar el pto de desempeño estructural utilizando un proceso numérico directo que involucra una serie de coeficientes modificados correspondientes a cambios espectrales. desplazamiento máximo posible, efectos de reducción de rigidez, pérdidas de arrastre y ciclos de histéresis del acelerador, e incrementos de desplazamiento producto a efectos de 2do orden.

Figura 17

Espectro de capacidad mét. de los coef. de desplazamiento

Nota. Documento definido originalmente por el FEMA 356, mejorado

por el FEMA 440 y adoptado por el ASCE 41-13.

El mét. del coeficiente MEC. Es una versión modificada de la aprox. de desplaz. iguales y que se utiliza para estimar el desplaz. máximo. Pinto Galvarino (2012, p. 57).

Figura 18

Espectro de capacidad ATC 40

Nota. ATC 40 en Pinto Galvarino (2012, p. 50).

Curva de Capacidad

Curva Capacidad. La Curva de Capacidad dentro del enfoque de desempeño estructura, es una representación gráfica que muestra la relación entre la capacidad estructural de un edificio y las demandas sísmicas que podría soportar. La curva se crea comparando la capacidad resistente de la estructura con la demanda sísmica esperada, lo que permite determinar el desplazamiento máximo de un edificio y evaluar su nivel de desempeño durante un terremoto.

Figura 19

Curva idealizada fuerza desplazamiento

Nota. ASCE/SEI 41-17 (Seismic evaluation and retrofit of existing buildings, 2018)

La curva está diseñada para representar principalmente la respuesta del primer modo de vibración de la estructura, partiendo del supuesto de que dicho modo corresponde a la respuesta dominante. Esto suele aplicarse a estructuras con períodos inferiores a un segundo. Para estructuras más flexibles, el análisis debe considerar el efecto de modos superiores, donde los patrones de carga lateral pueden evaluarse mediante el método CQC.

En un análisis estático no lineal (Pushover), se determina un patrón de carga lateral que va acrecentándose monótonamente hasta que la parte superior alcanza un cierto desplazamiento máximo o la estructura colapsa. El modelo matemático debe tener en cuenta el efecto de la respuesta inelástica del material para que las fuerzas calculadas sean una aprox. razonable de las fuerzas esperadas durante el terremoto de diseño.

Figura 20

Curva Capacidad de una estructura obtenida de CSI ETABS

Nota. Gráfica obtenida de CSI ETABS.

• Punto de desempeño

Punto de desempeño. Es el cálculo del desplazamiento máximo esperado del techo del edificio calculado para el sismo de diseño. De este modo se puede caracterizar el tipo de daño estructural respectivo y compararlo con los indicadores de rendimiento requeridos.

Figura 21

Punto de desempeño ATC-40

Nota. ATC 40 en Pinto Galvarino (2012, p. 51).

2.2.10 Niveles de desempeño en el Análisis de Pushover

Niveles de desempeño propuestos en el ATC-40. Para determinar si la estructura cumple con los objetivos de desempeño deseados, las respuestas obtenidas del ANL y la determinación de requisitos deben compararse con los límites especificados del nivel de desempeño seleccionado. La siguiente tabla muestra la operación entre pisos máxima permitida recomendada para cada nivel de rendimiento del ATC-40.

Figura 22

Niveles de desempeño propuestos en el ATC-40

NIVEL DE DESEMPEÑO	DERIVA DE ENTREPISO		
Ocupación inmediata	0.01		
Seguridad	0.02		
Estabilidad estructural	$0.33 V_i TP_i$		

Nota. Propuestos en el ATC-40

Tabla 1

Descripción de los niveles para los E.E y E.N.E según ATC-40

Ocupación inmediata, seguridad y estabilidad	
estructural son los tres estados de daño	
discretos. Los criterios técnicos para los	
procesos de evaluación y rehabilitación de	Operacional, ocupación inmediata,
estructuras pueden establecerse directamente	seguridad y amenaza reducida son los
en estos tres niveles. Además, se establecen	cuatro niveles de desempeño
dos niveles intermedios: seguridad limitada y	correspondientes a estados discretos de
daño controlado. Estos rangos intermedios	daño para los elementos no estructurales.
permiten discriminar el nivel de desempeño	La abreviatura NP-n se utiliza para
de la estructura de una manera más	representar estos niveles. Las
adecuada y útil. Esto es muy útil en caso de	prestaciones no estructurales se escriben
que sea necesario evaluar o reforzar una	NP, y n es una letra que puede tomar
estructura en particular. La abreviatura SP-n	valores entre Ay E.
(SP son las siglas de eficacia estructural y n	
es un número entre 1 y 6) se utiliza para	
identificar estos niveles.	

Niveles para los elementos estructurales

Niveles para los elementos no

estructurales

Nota. Niveles para los elementos estructurales y no estructurales según ATC-40.

Figura 23

Tabla de valores para derivas de piso propuesta por el ATC-40

Propuesta ATC-40 (1996)

Tabla 6.2. Niveles de desempeno de la edificación (ATC-40, 1996)						
	SP-1	SP-2	SP-3	SP-4	SP-5	SP-6
	Inmediata	Daño	Seguridad	Seguridad	Estabilidad	No
	Ocupación	Controlado	-	limitada	Estructural	considerado
		(rango)		(rango)		
NP-A	1-A					
Operacional	Operacional	2-A	NR	NR	NR	NR
-	-					
NP-B	1-B					
Inmediata	Inmediata	2-B	3-B	NR	NR	NR
Ocupación	Ocupación					
NP-C			3-C			
Seguridad	1-C	2-C	Seguridad	4-C	5-C	6-C
-			5			
NP-D						
Amenaza	NR	2-D	3-D	4-D	5-D	6-D
NP-E					5-E	No
No	NR	NR	3-E	4-E	Estabilidad	Aplicable
Considerado				_	Estructural	1

NP-E

1-A. Operacional

1-B. Ocupación Inmediata

(2-A, 2-B, etc.): otros niveles de desempeño posibles.

3-C. Seguridad de Vida

5-E. Prevención de Colapso

La designación NR corresponde a niveles de desempeño No Recomendables.

Nota. Tabla de valores límites para derivas de piso correspondientes al nivel de desempeño, propuestos por ATC-40.

Niveles de desempeño propuesto por VISION 2000 con aceptación del SEAOC.

A partir de los terremotos de Northridge en California de 1989 y 1994. Su base de diseño está contenida en el informe de Visión 2000 publicado por la Asociación de Ingenieros Estructurales de California (SEAOC, 1995). La verificación de niveles de desempeño ofrece un procedimiento alternativo a los procedimientos prescritos en las normas tradicionales de diseño sísmico para edificaciones. Esto incluye la selección de un esquema de evaluación apropiado que permita determinar las dimensiones y detalles de los componentes estructurales y no estructurales de manera que el daño estructural para un determinado grado de movimiento del suelo y un determinado grado de confiabilidad no exceda un cierto límite (Bertero, 1997).

Figura 24

Niveles de desempeño propuestos por SEAOC Visión 2000

NIVEL DE DESEMPEÑO	DERIVA DE ENTREPISO
Totalmente operacional	0.002
Operacional	0.005
Seguridad	0.015
Cercano al colapso	0.025
Colapso	> 0.025

Nota. Tabla de valores de niveles de desempeño propuestos por SEAOC Visión 2000.

Figura 25

Daños relacionados con los parámetros de demanda

Nota. Adaptada del documento SEAOC 1995-Visión 2000.

Tabla 2

Descripción de los niveles para los E.E y E.N.E por Visión 2000

TOTALMENTE OPERACIONAL

Corresponde a un nivel en el cual los daños esencialmente no ocurren. Para sus ocupantes,

la edificación sigue siendo completamente segura. Los contenidos y los servicios de la

edificación todavía están operativos y accesibles para su uso. En términos generales, no se

requieren reparaciones.

SEGURIDAD

Daños moderados asociados a elementos estructurales y no estructurales, así como en ciertos contenidos de la construcción, están relacionados. Es posible que la rigidez lateral de la estructura y su capacidad para resistir cargas laterales adicionales disminuyan significativamente, pero aún queda un margen de seguridad frente al colapso. Es posible que la rehabilitación de la estructura sea necesaria, siempre y cuando sea viable y económicamente justificada, ya que los daños causados podrían impedir su ocupación inmediatamente después del sismo.

OPERACIONAL

El contenido de la edificación y los elementos no estructurales sufren daños moderados en este nivel con daños leves en los elementos estructurales. Desde un punto de vista económico, el daño es mínimo y no afecta la seguridad de la estructura para que pueda seguir siendo utilizada después del sismo.

PRÓXIMO AL COLAPSO

La estabilidad de la estructura se ve amenazada por la disminución de la rigidez lateral y la capacidad resistente del sistema. A pesar de que los componentes que soportan las cargas verticales todavía están en uso, las fallas locales pueden interrumpir los servicios de evacuación. En estas circunstancias, la estructura es insegura para sus ocupantes y el costo de su reparación puede no ser viable desde una perspectiva económica.

Nota. Descripción del nivel de desempeño, propuestos por SEAOC Visión 2000.

Figura 26

Tabla de valores límites propuestos por SEAOC Visión 2000.

Estado	Nivel de	Características principales		
de daño	Desempeño			
Despreciable	Totalmente	Daño estructural y no estructural despreciable o nulo. Las		
	Operacional	instalaciones continúan prestando sus servicios y funciones		
	-	después del sismo.		
Ligero	Operacional	Daños ligeros. Las instalaciones esenciales continúan en		
		servicio y las no esenciales pueden sufrir interrupciones de		
		inmediata recuperación.		
Moderado	Seguridad	Daños moderados. La estructura sufre daños pero		
		permanece estable. Seguridad de ocupantes. Algunos		
		elementos no estructurales pueden dañarse		
Severo	Pre-Colapso	Daño estructural severo, en la proximidad del colapso		
		estructural. Falla de elementos no estructurales. Seguridad		
		de ocupantes comprometida.		
Completo	Colapso	Colapso estructural		

Nota. Tabla de daño y niveles de desempeño, propuestos por SEAOC,1995 Visión 2000.

Figura 27

Niveles de sismo de diseño vs niveles de desempeño Visión 2000

Nota. Objetivos de desempeño sísmico Propuestos por SEAOC,1995 Visión 2000.

Los niveles de desempeño def. por el comité VISIÓN 2000 son: completamente operable, operable, seguridad de vida, casi colapsado y colapsado. Recomienda dividir la curva de capacidad en sus sectores asociados. Para hacer esto, primero necesitamos definir el punto de equilibrio efectivo (modelo bilineal). Luego la parte correspondiente al comportamiento inelástico se divide en cuatro partes.

Figura 28

Niveles de desempeño y desplazamientos SEAOC Visión 2000

Nota. Propuestos por SEAOC Visión 2000

Figura 29

Niveles de desempeño propuesto por SEAOC Visión 2000

Nota. Propuestos por SEAOC Visión 2000

2.2.11 Análisis Tiempo Historia

El análisis del historial temporal no lineal es la técnica más importante para evaluar la rpta sísmica de una estructura sometida a carga dinámica (Wilkinson y Hiley, 2006); (Mwafy y Elnashai, 2001).

Métodos en el tiempo del diseño por Tiempo Historia. Los métodos para el diseño por tiempo historia es como sigue:

Figura 30

Métodos de análisis en el dominio del tiempo

Nota. Imagen generada por la empresa DIESCON ingenieros

Métodos de Newmark.

En función de su masa, rigidez y frecuencia angular, el método de Newmark permite una determinación muy precisa de la respuesta dinámica. Lo hace más conveniente porque acumula menos error de aceleración que otros procesos como Houbolt y Wilson.

Registros sísmicos. Los registros sísmicos deben ser compatibles con los espectros estándar. El espectro de pseudoaceleración se construye tomando la raíz cuadrada de la suma de cuadrados (SRSS) de la suma de los valores espectrales calculados por separado para cada componente de escala, donde $\zeta = 5\%$. ASCE7-17.3.3. Para registros adecuados, cada componente de par será escalable entre 0,2 TM (λ máx) y 1,25 TM (λ mín), y el Espectro de Respuesta del componente de par escalado será al menos el 90% del componente de par correspondiente al Espectro de Rpta del diseño utilizado.

Usando una combinación de SRSS.

$$SRSS = \sqrt{(0.90 EO_{5\%})^{2} + (0.44 NS_{5\%})^{2}} Y \sqrt{(0.90 NS_{5\%})^{2} + (0.44 EO_{5\%})^{2}}$$
$$SRSS = \sqrt{(EO_{5\%})^{2} + (NS_{5\%})^{2}}$$

Figura 31

Estructura del C.S. Conchopata-combinación SRSS

Nota. Modelado 3D en ETABS de la Estructura del C.S. Conchopata

Figura 32

Gráfica de combinación del SRSS

Nota. Imagen generada por la empresa DIESCON ingenieros

Tratamiento de los Registros

Espectro Objetivo

• $ZSMC = 1.5Z, R = 1, \beta = 5\%, B = 1$

Figura 33

Imagen de la portada de la Norma E.030 sismorresistente

Nota. La Norma E.030 de diseño sismorresistente

Registros Compatibles. Los registros de aceleración deben obtenerse de eventos cuyas magnitudes, distancias de daño, mecanismos focales y condiciones locales del terreno sean similares al proyecto.

Figura 34

Registro sísmico compatible

Nota. Registro sísmico de diseño en X del análisis THNL-Lima

Registros ANLTH

• Corrección, filtrado, ajuste

Figura 35

Registro sísmico ANLTH

Nota. Registro sísmico, espectro de Objeto, espectro del acerelograma escalada y original, Este-Oeste-Lima

2.2.12 Niveles de Amenaza Sísmica para el Tiempo Historia

Los riesgos sísmicos derivados del mov. del suelo deben tener en cuenta la ubic. del edificio en relación con las fallas existentes, así como las características regionales y geológicas. El grado en que estas amenazas afectan el desempeño de la estructura depende de la magnitud del terremoto, la distancia desde la fuente, la dirección de propagación de la ruptura de la falla y las características geológicas de la región y el sitio. Se debe considerar y estudiar el impacto de cada componente del peligro.

Figura 36

Niveles de amenaza sísmica propuesto por VISIÓN 2000

MOVIMIENTO SÍSMICO DE DISEÑO	INTERVALO DE RECURRENCIA	PROBABILIDAD DE EXCEDENCIA	
Frecuente	43 años	50% en 30 años	
Ocasional	72 años	50% en 50 años	
Raro	475 años	10% en 50 años	
Muy raro	950 años	10% en 100 años	

Nota. Amenaza sísmica propuesto por VISIÓN 2000

Figura 37

Niveles de amenaza sísmica propuesta del ATC-40

ATC-40 utiliza 3 niveles de mov. sísmico para el diseño estructural: sismo de servicio, sismo de diseño y sismo máx. Más detalles se proporcionan a continuación.

SISMO DE SERVICIO (SE)	SISMO DE DISEÑO (DE)	SISMO MÁXIMO (ME)		
Nivel del movimiento del terreno con 50% de probabilidad de excedencia en un período de 50 años. Período de retorno: T= 75 años. Se considera como un sismo frecuente, ya que puede ocurrir más de una vez durante la vida útil de la estructura.	Nivel del movimiento del terreno con 10% de probabilidad de excedencia en un período de 50 años. Período de retorno: T= 475 años. Representa un movimiento sísmico poco frecuente, de intensidad entre moderada y severa, y se considera que puede ocurrir al menos una vez durante la vida de la estructura.	Nivel del movimiento del terreno con entre 2% y 5% de probabilidad de excedencia en un período de 50 años. Período de retorno: T= entre 975 y 2475 años. Corresponde al máximo movimiento del terreno que puede ser esperado en el sitio donde se encuentra localizada la estructura. Es utilizado para el diseño de estructuras esenciales.		

Nota. Amenaza sísmica propuesto del ATC-40

Obj. de desempeño = Niv. de Desempeño de la Edif. + Niv. de Amenaza Sísmica

2.3 Definición de Conceptos

2.3.1 Filosofía de Diseño Sismorresistente

Consideraciones que debe tener uno en el diseño de una edificación para evitar siniestros, minimizar daños a la propiedad, soportar sismos menores sin causar daños, soportar sismos moderados (teniendo en cuenta la posibilidad de Daños estructurales menores) y finalmente soportar sismos severos (teniendo en cuenta la posibilidad de daños estructurales) existiendo una probabilidad de derrumbe de las edificaciones muy baja.

2.3.2 Análisis Estático lineal

El A.E.L. es un enfoque de diseño en el que se aplican a la estructura fuerzas estáticas equivalentes en los pisos, debidas al viento o a los terremotos. El cálculo de las fuerzas en los pisos es prescriptivo y las fórmulas para calcular estas fuerzas se proporcionan en el código de construcción aplicable.

2.3.3 Análisis Dinámico lineal

El A.D.L es una perturbación externa que no tiene ciertas leyes, por lo que estaremos en la suma de los tipos de vibración (períodos que queremos obtener), la rigidez y masa inducida del edificio y la perturbación externa, debido al forzado. la vibración es obviamente un espectro o historia temporal (aceleración versus tiempo).

2.3.4 Espectro de demanda

Un espectro de demanda es un valor utilizado de una expresión del desempeño objetivo deseado que debe ser capaz de alcanzar un edificio sujeto a un determinado nivel de movimiento sísmico.

2.3.5 Análisis Estático No Lineal.

El análisis estático no lineal consiste en la aplicación incremental de cargas. Durante los cálculos, las cargas no se consideran en un momento específico, sino que se incrementan gradualmente y se realizan soluciones en estado de equilibrio sucesivos.

2.3.6 Análisis Dinámico No Lineal

El análisis dinámico no lineal es un tipo de análisis estructural que considera tanto los efectos no lineales de las propiedades de los materiales, la geometría y las condiciones de contorno, como los efectos dinámicos de las cargas variables en el tiempo y las fuerzas de inercia.

2.3.7 Material elástico

Los materiales elásticos son aquellos que tienen la capacidad de deformarse bajo la acción de una fuerza externa y luego recuperar su forma original una vez que cesa dicha fuerza. Esta propiedad se conoce como elasticidad y se debe a la capacidad de los materiales para almacenar energía en su estructura interna.

2.3.8 Material inelástico

Estos materiales se pueden moldear en diferentes formas, pero no vuelven a su forma original cuando se elimina la fuerza. Hay dos subcategorías principales de materiales inelásticos: frágiles (materiales que se agrietan o fracturan fácilmente sin mucho estiramiento, como el vidrio) y dúctiles (materiales que se pueden estirar o comprimir hasta obtener una forma deformada sin romperse, como la plastilina a temperatura ambiente).

2.3.9 Linealidad

El concepto de linealidad es una idealización acerca del comportamiento real de los materiales que forman las estructuras. Esta aproximación se utiliza ampliamente en el análisis estructural, debido a que, generalmente, da resultados suficientemente correctos y a que simplifica en gran manera los cálculos a realizar. **2.3.10 No linealidad**

El análisis no lineal es aquel en donde la proporcionalidad entre las fuerzas y los desplazamientos (tensiones – deformaciones) ya no es lineal (no es una línea recta). Esto es debido a que la rigidez no es constante.

2.3.11 No Linealidad física

La no linealidad física que origina los efectos denominados de segundo orden, es un fenómeno que está presente en toda estructura que presenta deformación en sus elementos bajo un conjunto de cargas o incluso bajo su peso propio.

2.3.12 No Linealidad del Material

La no linealidad de material aparece cuando los cambios de la rigidez del elemento son causados por los cambios en las propiedades del material bajo condiciones de funcionamiento.

2.3.13 Deriva de piso

Desplazamiento relativo máximo entre niveles colocados en una misma línea vertical, en dos pisos o niveles consecutivos de la edificación.

2.3.14 Distribución de las fuerzas sísmicas de diseño

Las fuerzas laterales utilizadas en el diseño de los miembros se aplican en el Centro de Masa de cada nivel y utilizan una distribución de altura proporcional a la distribución de altura obtenida del análisis modal del modo de respuesta básico en la dirección relevante.
2.3.15 Modos naturales de Vibración

Es la frecuencia natural a la que un objeto seguirá vibrando después de golpearlo. Esto no puede ser más claro. Todos los objetos y sistemas mecánicos tienen una frecuencia natural. Incluso pueden tener muchas frecuencias naturales en función de su geometría.

2.3.16 Rótula Plástica

Es un dispositivo de amortiguación de energía, que permite la rotación de la deformación plástica de la conexión de una columna. Se usa para describir la deformación de una sección en una viga donde se produce la flexión.

2.3.17 Momento Curvatura y Momento rotación.

El diagrama momento curvatura nos permiten conocer la ductilidad de una sección, es decir su potencial de incursionar en un rango no lineal antes de llegar a su fallo. El diagrama momento curvatura permite identificar en qué momento y en qué punto se puede presentar una falla local como es el agrietamiento o articulación interna, además también permite conocer en qué punto es la primera fluencia del acero. Y el diagrama del momento rotación es la base de todo análisis no lineal y está íntimamente relacionado con el diagrama momento-curvatura.

2.3.18 Generación de Diagrama Momento Curvatura

Un diagrama de curvatura de momento flector se crea aumentando la curvatura de la sección (la pendiente del diagrama de tensión) y utilizando las relaciones tensión-deformación asumidas para el material para determinar las tensiones y fuerzas en la sección. A partir del diagrama de deformaciones y de la supuesta relación tensión-deformación, se puede determinar la distribución de tensiones. Finalmente, la fuerza y su punto de operación se calculan integrando el volumen bajo la distribución de tensiones. Los diagramas de momento curvatura se utilizan para evaluar la ductilidad de elementos estructurales y, por lo tanto, son muy importantes para determinar la cantidad de energía plástica que un elemento estructural puede absorber.

2.3.19 Longitud Plástica

La longitud plástica es la longitud entre las caras verticales u horizontales que conducen a un miembro de una viga o columna donde se forman las rótulas plásticas (Priestley, 1996):

$$L_{\rm P} = 0.08L + 0.022 f_{ye} \ d_{bl} \ge 0.044 f_{ye} \ d_{bl}$$

Donde: fye, es el punto de fluencia de las barras de refuerzo y dbl, es el diámetro de la barra longitudinal.

Capítulo III. Marco Metodológico

3.1 Hipótesis

3.1.1 Hipótesis General

 El desempeño sísmico contribuye técnicamente en los proyectos de salud en Ayacucho, como método de evaluación rápida frente a un sismo aplicando el A.E. No lineal Push Over y tiempo historia.

3.1.2 Hipótesis Específicas

- La definición de la linealidad, no linealidad física los materiales como diseño estructural convencional en los proyectos de salud es un factor determinante en la evaluación por desempeño sísmico en los proyectos de salud en Ayacucho, 2024.
- La Curva Capacidad con el método No lineal de Push Over es un factor determinante en la evaluación por desempeño sísmico Over en los proyectos de salud en Ayacucho, 2024.
- El Desempeño Sísmico en los proyectos de salud en Ayacucho, 2024, depende del punto de desempeño de la Curva de Capacidad del método no lineal de Push Over y el tiempo histórico como método de verificación.
- La evaluación por desempeño en los proyectos de salud en Ayacucho, 2024, depende de los niveles de desempeño de la Curva de Capacidad utilizando el método No lineal de Push Over.

3.2 Operacionalización de Variables

3.2.1 Variable independiente.

Desempeño sísmico

Indicadores:

- Espectro Objetivo
- Curva de desempeño

• Puntos de desempeño sísmico

3.2.2 Variable dependiente.

Análisis estático no lineal (Pushover) y Tiempo historia

Indicadores:

- Materiales de los elementos estructurales (linealidad (Asl, Ast)).
- Secciones de los elementos (no linealidad geométrica)
- Materiales de los elementos estructurales (no linealidad de materialesrótulas plásticas)
- Curva Capacidad Pushover
- Espectro de registro sísmico (Desplazamiento y aceleraciones de entrepiso

3.3 Enfoque de investigación

El enfoque de la presente investigación es **Cuantitativa**, ya que lo que trata es de cuantificar la medición de las variables que se obtuvieron en el estudio.(Sampieri, 2014).

3.4 Tipo de investigación

El tipo de Investigación es de tipo Aplicativa-Tecnológica

Carrasco D., (2009) en su libro de *Metodología de la investigación científica* define: "Que este tipo de investigación se caracteriza por tener una finalidad clara e inmediatamente práctica, es decir, se estudia con el objetivo de actuar, transformar, modificar o cambiar algún ámbito de la realidad", (p.43).

Para demostrar la hipótesis, se empleó software en diseño estructural asistido por computadora.

3.5 Nivel de investigación

El Nivel de investigación es **Descriptivo Explicativo o Causal**, al ubicar las variables se procedió a determinar la incidencia de los niveles de las variables.

Carrasco D., (2009) en su libro *Metodología de la investigación científica* define "Es una investigación que responde a la pregunta "¿por qué?", es decir, con la ayuda de esta investigación podemos aprender por qué un hecho o fenómeno realmente tiene tales o cuales propiedades, características, propiedades, etc. En resumen, ¿por qué las variables de investigación son como es?" (p.42).

3.6 Diseño de investigación

El diseño de investigación es **No Experimental de tipo transversal**. Es respecto es No experimental porque se realiza sin manipular deliberadamente las variables, es decir la variable independiente no fue manipulada y de tipo transversal, porque los datos son recolectados en un solo momento, en un mismo tiempo y el propósito es describir variables y analizar su incidencia e interrelación en el momento dado.

3.7 Método de la investigación

Lógico – Deductivo.

Lógico por que se basan en el uso del razonamiento en sus funciones de razonamiento, análisis y síntesis, mientras que los métodos empíricos acceden al conocimiento utilizando la experiencia e incluyen la observación y la experimentación como parte de la misma.

Hernández et al., (2014), en su libro *Metodología de la Investigación* plantea que, dentro de los enfoques de investigación, el método cuantitativo, considera el proceso deductivo (p.3).

3.8 Población y muestra

3.8.1 Población

La población N=1, todos los proyectos de salud en Ayacucho de tipología vertical con un área reducida.

3.8.2 Muestra.

También conocida como muestra dirigida, es un mecanismo de selección que se basa en el tipo de investigación (muestreo no probabilístico), la selección se basa en la accesibilidad, arbitrariedad o por el criterio del investigador siendo el sesgo más susceptible donde no se puede calcular con qué nivel de confianza se hace una estimación, ya que no se puede tener con precisión el error estándar. En este caso, la muestra es la misma que la población, por lo que N=n=1, resultando que el proyecto del centro de salud Conchopata es un edificio de seis niveles, con cinco pisos más semisótanos destinados a oficinas y áreas de atención médica. El tamaño de la planta del **terreno trapezoidal**, que equivale a medidas rectangulares, **aprox. 29.4 m x 18.72 m**, y el área techada por piso típico es de aproximadamente **450 m2**, si bien la norma NTE E.030 no permite el uso de sistemas aporticados en edificaciones esenciales como centros de salud, el uso de un sistema aporticado en el análisis de la tesis responde a un propósito más investigativo tomando como principio el procedimiento de desempeño de la edificación acorde a las normas internacionales del ATC-40, FEMA 440 y ASCE 41-13.

3.9 Técnicas de recolección de los datos

Mediante la obtención de Información técnica, legal y se verificaron en campo del Proyecto del Establecimiento de salud en Ayacucho.

- Recopilación de Planos, EMS, entre otros de la Dirección Regional de Investigación y Estudios del GRA.
- Ingreso al sistema de la DIRESA (Tipo de Establecimiento de salud).
- Observación no estructurada (visita a campo proyecto).

3.10 Instrumentos de recolección de los datos

Los principales instrumentos que se aplicaron en las técnicas de recolección de datos son:

- Software para el Análisis Estructural (SAP2000-ETABS), como instrumento para sistematizar las técnicas de diseño y optimización de la vulnerabilidad de los establecimientos de salud en Ayacucho.
- Herramientas informáticas del DIRESA.
- Libreta de campo, grabador y cámara de video.

3.11 Análisis e interpretación de los datos

- Para realizar la interpretación estadística de datos se empleó el Software SPSS V.22.
- Para el análisis, cálculo e interpretación de datos el Software de Análisis Estructural de Edificaciones (SAP2000-ETABS 20.3.0), las normativas de desempeño sísmico del FEMA 440, ASCE/SEI 41-13, en sus diferentes versiones y para obtener los objetivos de diseño se trabajará con las propuestas del VISIÓN 2000.

3.12 Procedimiento

Se utilizó el programa de análisis y diseño estructural **3D ETABS** se realizan los siguientes pasos:

- a. Definir las propiedades geométricas de los planos de arquitectura en planta y elevación.
- b. Definir propiedades de los materiales utilizados en la edificación.
- c. Definir secciones de vigas, columnas, losa y muros estructurales.
- d. Asignar de vigas, columnas, losa y muros estructurales.
- e. Asignar base empotrado a la edificación.
- f. Definir diafragmas en cada piso definido.
- g. Asignar diafragmas en los pisos creadas en la definición de grillas.
- h. Asignar brazo rígido en toda la edificación.
- i. Definir fuente de masa.
- j. Definir cargas según E020 a las cargas muerta y viva.
- k. Asignar cargas a las losas en cada entrepiso.

- I. Definir patrón de cargas.
- m. Definir combinación de cargas.
- n. Diseño y verificación de área de aceros de refuerzo.
- o. Hacer correr el programa y verificar si tiene errores
- p. Verificar los periodos y la participación modal.
- **q.** Definir el acero de refuerzo longitudinal en vigas, columnas y muros estructurales de acuerdo a las dimensiones de los elementos estructurales.
- **r.** Definir materiales en propiedades avanzadas para el concreto no confinado y confinado.
- s. Asignar concreto confinado a vigas, columnas y muros estructurales.
- t. Definir rótulas plásticas en vigas y columnas ASCE 41-13.
- u. Definir cargas de gravedad no lineal.
- v. Definir cargar Pushover en ambas direcciones.
- w. Definir punto de control.
- x. Asignar rótulas plásticas en vigas y columnas ASCE 41-13.
- y. Reducción de rigidez en vigas y columnas según FEMA y ASCE 41-13.
- z. Hacer correr el programa y verificar si tiene errores.
- aa. Verificar con el tiempo historia para ello escogemos un registro sísmico.
- bb. Corregir por línea base y filtrar el registro sísmico.
- cc. Analizar y comparar el comportamiento del edificio por tiempo historia y el Pushover.

Capítulo IV. Resultados

4.1 Descripción del trabajo de Campo realizada en el C.S. Conchopata

El trabajo de campo realizado para este proyecto de investigación incluyó inspección visual y la recopilación de información básica de campo para la elaboración del proyecto, información que se usó en la aplicación del análisis de desempeño sísmico del C.S. Conchopata en Ayacucho, con respecto a la información de planos, estudios geológicos, geotécnicos se trabajó con la información del Proy.: "Construcción y Mejoramiento de los Servicios de Salud del Puesto de Salud Conchopata" elaborada en el Gobierno Regional de Ayacucho, donde forme parte del equipo técnico para elaboración de PIP del proyecto en mención.

Durante todo el proceso de trabajo de campo, se respetaron los principios éticos de la investigación, incluyendo el consentimiento e informado a los responsables directos del Centro de Salud, la confidencialidad de la información recolectada y la devolución de resultados a la comunidad.

Figura 38

Recolección de datos del C.S. Conchopata

Vista frontal del actual C.S. Conchopata

Figura 40

Fachada del actual C.S. Conchopata

Tomas fotográficas prospección mediante calicata

4.2 Diseño de la presentación de los resultados

4.2.1 Descripción de la edificación del C.S. Conchopata

El edificio es un conjunto de seis niveles terminados, con cinco pisos más semisótanos destinados a oficinas y áreas de atención médica. El tamaño de la planta del terreno trapezoidal, que equivale a medidas rectangulares, es de alrededor de 29.4 m x 18.72 m, y el área techada por piso típico es de aproximadamente 450 m2. Según la Norma E.020, los tabiques de unidades de albañilerías huecas, con un peso específico de 1350 kg/m3, se separarán para usos como baños públicos o tabiquería de separación (SENCICO, 2020). En el programa ETABS, las unidades de albañilería y el tarrajeo de la pared están incluidas en este peso.

Figura 42

El Render 3D del Nuevo Proyecto del C.S. de Conchopata

Planos de planta-Arquitectura

TERCERA PLANTA ESC: 1/75

CUARTA PLANTA ESC: 1/75

0 8

Planos de techo-sótano

4.2.2 Estructuración y predimensionamiento en C.S. Conchopata

Se han instalado pórticos en ambas direcciones, y para equilibrar la rigidez lateral, se ha colocado una pequeña placa vertical en el lado de menor tamaño. Estos componentes fueron colocados de manera que no causaran torsión en nuestra estructura y que fueran simétricos en las direcciones X y Y. Los criterios mencionados determinaron la asignación de las columnas, las cuales finalmente requirieron cambios en el aspecto arquitectónico. Para que coincidan con los ambientes amplios sugeridos en los planos arquitectónicos, la distribución de estos elementos crea luces muy grandes. En la estructuración, para garantizar la uniformidad y la continuidad en altura, se ha considerado una planta típica con algunos pisos y dimensiones iguales en los elementos verticales. Por los cortes que se presentan en la forma del terreno, se consideró que en los paños rectangulares y trapezoidales se utilizaban losas aligeradas de una sola dirección. El predimensionamiento implica establecer valores tentativos para las dimensiones de los diversos componentes estructurales. Se puede realizar el predimensionamiento de una estructura con base en la norma E.060, el anteproyecto arquitectónico y la experiencia o práctica ingenieril. Estos valores no son los definitivos, ya que se pudieron modificar durante las fases de análisis y diseño, donde se verificó su validez. Como estos nos brindan una mayor claridad de información sobre el costo y la calidad de la estructura, es crucial acercarse lo más posible a los valores finales. A continuación, aparece.

Figura 45

Estructuración y Predimensionamiento vista frontal 1

Estructuración y Predimensionamiento vista frontal 2

Figura 47

Estructuración y Predimensionamiento vista frontal 3

Estructuración y Predimensionamiento vista frontal 4

Losas

Las losas aligeradas convencionales armadas en una dirección de espesor de 20 cm componen el sistema de techado.

Vigas

Las vigas peraltadas fueron colocadas para unirse a los componentes estructurales verticales y crear junto a ellos los componentes resistentes a fuerzas laterales. Además, se utilizaron como medios de transferencia de cargas que provienen de las losas u otras vigas. Los elementos de borde fueron las vigas chatas.

• VIGA (30X60) cm. Principal, VIGA (30X60) cm. Secundaria y VIGA (35X25) cm. Chata

Columnas

Las dimensiones de las columnas se pueden calcular utilizando los criterios establecidos en el libro de estructuración y predimensionamiento (Blanco, 1994). Es importante tener en cuenta la carga axial, el área tributaria y la cantidad de niveles de la edificación.

• COLUMNA L(150X150) cm. y COLUMNA I (50X150) cm.

Placas

El Ing. Blanco y la Norma E.060 sugieren realizar un análisis sísmico para medir el espesor de las placas (SENCICO, 2009). Consideran e=15 cm para viviendas de pocos pisos, que aumenta con la cantidad de pisos. Se emplearon placas de espesores de MURO-25 (e=0.25) m. para evitar efectos de torsión debido a que la edificación a diseñar consta de seis niveles de piso, terminados con una geometría trapezoidal.

4.2.3 Metrado de cargas de la edificación del C.S. Conchopata

Los pesos de los componentes estructurales (placas, columnas, vigas, losas) y no estructurales (tabiques, parapetos, etc.) se tomaron en cuenta en las cargas de gravedad. Se consideró una sobrecarga de 200 Kg/m2 según la Norma de Cargas E-020.

4.2.4 Modelo estructural del C.S. Conchopata

Para realizar el análisis sísmico de la estructura y obtener resultados como deformaciones, desplazamientos y fuerzas internas, se creó el modelo de la edificación en el programa ETABS. En cada entrepiso se modeló la estructura como pórticos planos con vigas, columnas y placas conectadas por losas idealizadas como diafragmas rígidos.

Cada uno de estos diafragmas tiene 3gdl: 2 translaciones horizontales y 1 rotación perpendicular a la losa. Con cinco pisos y un semisótano, es decir, seis niveles de piso, la construcción ofrece un total de 18 modos. La función más importante en la edificación será la de las vigas sísmicas, las columnas y las placas, que se consideraron sismorresistentes en el modelo. Se consideraban como brazo rígido cuando las vigas se encontraban con las columnas o placas y el acero tenía una suficiente longitud de desarrollo debido a su espesor o ancho muy delgado. Por otro lado, se pensaba que cada apoyo de la base de la estructura estaba empotrado. Se asignaron manualmente las cargas de sobrecarga, tabiquería y piso terminado después de completar el modelado de la estructura. También se sabe que el programa ETABS obtiene automáticamente el peso propio de los elementos estructurales, de modo que tomando en cuenta el 100% de la carga propia y el 25% de la carga viva, es posible obtener la masa de cada piso. y el peso total de la edificación Para edificaciones ordinarias, según la norma E. 030 (SENCICO, 2018).

4.2.5 Análisis Sisimico del C.S. Conchopata

Según la Norma E.030 (SENCICO, 2018), se deben obtener seis parámetros de las características del edificio para su evaluación, incluyendo su ubicación, el tipo de suelo, la configuración estructural, el tipo de uso y las irregularidades potenciales. La siguiente tabla muestra los parámetros del sismo para la edificación.

4.2.6 P. fundamental de vibración de la estructura del C.S. Conchopata

Periodo de vibración fundamental Se muestran los métodos y tiempos esenciales, teniendo en cuenta los necesarios para lograr una suma del 90% de la masa participativa en ambos aspectos. Se describieron 18 formas que son adecuadas para cumplir con lo requerido.

Figura 49

Periodo fundamental de vibración de la estructura

		TABLE:	Modal Participat	ing Mass Ratios	
Case	Mode	Period	UX	UY	UZ
			% Masa	% Masa	% Masa
		sec	participativa X	participativa Y	participativa Z
MODAL	1	0.3020	6.3500	72.3100	0.00090
MODAL	2	0.2760	66.8700	7.00000	0.22000
MODAL	3	0.2390	1.9300	0.00412	75.4800
MODAL	4	0.0890	0.0012	13.14000	0.00012
MODAL	5	0.0720	6.3500	0.08000	0.15000
MODAL	6	0.0650	66.8700	0.00243	15.75000
MODAL	7	0.0490	1.9300	0.10000	0.01000
MODAL	8	0.0490	6.3500	3.98000	0.00060
MODAL	9	0.0450	66.8700	0.00009	0.00037
MODAL	10	0.0410	1.9300	0.01000	0.02000
MODAL	11	0.0390	1.0012	0.32000	0.02000
MODAL	12	0.0360	6.3500	0.65000	0.72000
MODAL	13	0.0340	66.8700	0.65000	0.01000
MODAL	14	0.0330	1.9300	0.58000	0.36000
MODAL	15	0.0320	6.3500	0.00023	3.49000
MODAL	16	0.0300	66.8700	0.00435	0.00369
MODAL	17	0.0300	1.9300	0.00043	0.02000
MODAL	18	0.0300	2.0012	0.00322	0.04000

Principales Participaciones Modales en el X, Y y Z

EN X-X

EN Y-Y

EN Z-Z

4.2.7 Análisis sísmico estático del C.S. Conchopata

La Norma **E.030** (SENCICO, 2018) no recomienda realizar este análisis a aquellas estructuras regulares que superen los 30 metros de altura, pues a mayor altura del edificio, los resultados obtenidos tendrán una menor precisión. La edificación a analizar cumple con el requerimiento de altura debido a que es una estructura de 5 pisos más un semisótano; sin embargo, se deberá realizar este análisis estático para escalar el sismo y obtener la cortante de diseño. Asimismo, este método sirve para determinar la fuerza de cortante basal estática (V) y distribuirlos por nivel. Para calcular "V" se usa la siguiente fórmula:

V = (Z * U * C * S) / R * (P)

Para determinar el peso sísmico de la estructura, se debe tomar el 100% de la C.M. y el 25% de la C.V. para edificaciones tipo "C". Se presentan los pesos en cada nivel y el peso símico total de la estructura.

Tabla 3

TABLE: Story P	Peso Peso					
Story	Output Case	Case Type	Location	PESO X	PESO Y	PESO
	100%CM+25%CV			tonf	tonf	DESAGREGADO TOTAL
T. TECHO	PESO SISMICO	Combination	Bottom	98.4845	98.4845	98.48450
STORY4	PESO SISMICO	Combination	Bottom	482.3797	482.3797	383.89520
STORY3	PESO SISMICO	Combination	Bottom	866.2767	866.2767	383.89700
STORY2	PESO SISMICO	Combination	Bottom	1250.173	1250.173	383.89710
STORY1	PESO SISMICO	Combination	Bottom	1634.070	1634.070	383.89700
SEMISOTANO	PESO SISMICO	Combination	Bottom	245.4028	245.4028	PT =1634.070

Peso por piso de la estructura

Se utiliza la fórmula anterior para calcular la cortante basal estática después de obtener todos los parámetros y el peso total de la estructura.

Resolviendo:

Parámetros sísmicos

MANUAL	DIRECCIÓN X-X	DIRECCIÓN Y-Y	
T=	0.255	0.255	
Z=	0.25	0.25	
S=	1.2	1.2	
TP=	0.6	0.6	
TL=	2	2	
U=	1.5	1.5	
C=	2.5	2.5	
Ro=	8	8	
la=	1	1	
lp=	1	1	
PESO EDIFICO	1634.0708	1634.0708	
VE=ZUCS/R	0.140625	0.140625	
VE=	229.7912063	229.7912063	
C/R>0.11	0.3125	0.3125	
К=	1	1	

Tabla 4

Fuerzas por piso de la estructura

Story	Output Case	PESO	Alturas	Pi*hi^k	Alfa i	FUERZAS
	100%CM+25%CV	DESAGREGADO	m			-
		TOTAL				tonf
T. TECHO	PESO SISMICO	98.48450	15.5	1526.50975	0.10901196	25.0499908
STORY4	PESO SISMICO	383.89520	13.0	4990.6376	0.35639419	81.8962514
STORY3	PESO SISMICO	383.89700	9.75	3742.99575	0.2672969	61.4224766
STORY2	PESO SISMICO	383.89710	6.50	2495.33115	0.17819798	40.9483284
STORY1	PESO SISMICO	383.89700	3.25	1247.66525	0.08909897	20.4741588
SEMISOTANO	PESO SISMICO	PT =1634.0708				
				Suma Pi*hi^k	14003.1400	229.791206

Definiendo patrones de carga en la dirección X

				Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
SEX	Seismic	~ 0	User Coefficient	✓ Modify Load
	Dead Live	1 0		Modify Lateral Load
SEY	Seismic	0	User Coefficient	Delete Load
				OK Can
ismic Load Pattern - Use	r Defined			×
ismic Load Pattern - Use rection and Eccentricity	ir Defined	Factors		×
ismic Load Pattern - Use rection and Eccentricity X Dir	r Defined	Factors Base Shear Coefficient, C	0.14063	×
ismic Load Pattern - Use rection and Eccentricity > X Dir X Dir + Eccentricity	r Defined	Factors Base Shear Coefficient, C Building Height Exp., K	0.14063	×
smic Load Pattern - Use rection and Eccentricity > X Dr > X Dr + Eccentricity > X Dr - Eccentricity	r Defined Y Dir Y Dir Y Dir + Eccentricity Y Dir - Eccentricity	Factors Base Shear Coefficient, C Building Height Exp., K	0.14063	×
smic Load Pattern - Use rection and Eccentricity X Dr X Dr + Eccentricity X Dr - Eccentricity Fcc. Batio (Al Dianh)	r Defined Y Dir Y Dir + Eccentricity Y Dir - Eccentricity 0.05	Factors Base Shear Coefficient, C Building Height Exp., K Story Range Too Story	0.14063 1 T.TECHO	×
ismic Load Pattern - Use rection and Eccentricity X Dr X Dr + Eccentricity X Dr + Eccentricity Ecc. Ratio (Al Daph.) Overwrite Eccentricities	rr Defined	Factors Base Shear Coefficient, C Building Height Exp., K Story Range Top Story Bottom Story	0.14063 1 T.TECHO V SEMISOTANO V	×

Figura 53

Definiendo patrones de carga en la dirección Y

oads				Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
SEY	Seismic	~ 0	User Coefficient ~	Modify Load
	Live		User Coefficient	Modify Lateral Load
SEY	Seismic	Ŏ	User Coefficient	Delete Load
				OK Creat

Direction and Eccentricity		Factors	
🗌 X Dir	Y Dir	Base Shear Coefficient, C	0.14063
X Dir + Eccentricity	Y Dir + Eccentricity	Building Height Exp., K	1
X Dir - Eccentricity	Y Dir - Eccentricity	A	
		Story Range	
Ecc. Ratio (All Diaph.)	0.05	Top Story	T.TECHO
Overwrite Eccentricities	Overwrite	Bottom Story	SEMISOTANO

Reacciones en la Base de la Estructura

			TABLE: Bas	e Reactions	Ļ		
Output							
Case	Case Type	FX	FY	FZ	МХ	MY	MZ
		tonf	tonf	tonf	tonf-m	tonf-m	tonf-m
		-206.0548	-0.8885	0	2.8878	-2859.7722	3197.981
SEX	LinStatic						
		-5.6031	-197.1044	0	2830.6833	-18.2102	-
SEY	LinStatic						1672.3609

4.2.8 Análisis dinámico del C.S. Conchopata

Según la Norma E.030 (SENCICO, 2018), el A.D. es más preciso que el A.E, ya que no tiene restricciones y se puede utilizar en cualquier tipo de estructura. El A.D. Modal espectral se utilizó en el proyecto actual, ya que se planea construir una estructura de cinco pisos y un semisótano. Según la NormaE.030 (SENCICO, 2018) se define como:

$$Sa = \frac{ZUCS}{R} * g$$

La tabla de los parámetros sísmicos muestra las definiciones de los valores Z, U, S y R.

El periodo T influirá en el Coef. de amplificación sísmica "C".

Los valores de "Sa" para cada valor de "C" en sus diferentes períodos se pueden obtener resolviendo la fórmula anterior.

El espectro de pseudoaceleraciones Sa(g) vs T de la Norma E.030 se creará después de obtener los valores anteriores (SENCICO, 2018) que será presentada en la gráfica siguiente:

Figura 55

Definiendo patrones de carga-análisis seudodinámico

Figura 56

Definiendo patrones sismo seudodinámico en X

Load Case Name		SDX		Design	
Load Case Type		Besponse Spects	um ~	Notes	
Mass Source		Previous (PESO)	Previous (PESO SISMICO)		
Analysis Model		Default	Default		
		Derdak			
ads Applied					
Load Type	Load Name	Function	Scale Factor		
ther Parameters				Advances	
ther Parameters Modal Load Case		MODAL	~	Advances	
ther Parameters Modal Load Case Modal Combination M	ethod	MODAL	~	Advances	
ther Parameters Modal Load Case Modal Combination M	ethod id Response	MODAL CQC Rigid Frequency, f1	~	Advances	
ther Parameters Modal Load Case Modal Combination M	ethod id Response	MODAL COC Rigid Frequency, f1 Rigid Frequency, f2	~	Advances	
ther Parameters Modal Load Case Modal Combination N include Rig	ethod id Response	MODAL CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Advances	
ther Parameters Modal Load Case Modal Combination M Include Rig Earthquake D.	ethod Id Response ration, td	MODAL CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		Advances	
ther Parameters Modal Load Case Modal Combination M Include Rig Earthquake D. Directional Combinatio	ethod id Response ration, td an Type	MODAL COC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS		Advances	
ther Parameters Modal Load Case Modal Combination M Include Rig Earthquake Dr. Directional Combinati Absolute Direct	ethod Id Response ration, td on Type ional Combination Sc	MODAL COC Rojd Frequency, (1 Rojd Frequency, (2 Periodic + Rigid Type SRSS ale Factor		Advanced	
ther Parameters Modal Load Case Modal Combination M Include Rig Earthquake DJ Directional Combinati Absolute Direct Modal Damping	ethod Id Response ration, td on Type ional Combination Sc Constant at 0.0	MODAL COC Rigid Frequency, 11 Rigid Frequency, 12 Periodic + Rigid Type SRSS set Stator 5		Advanced	

Definiendo patrones sismo seudodinámico en Y

Load Case Name		SDY		Design
Load Case Type		Renonce Spectru	m v	Design
Mass Source		Provinue (PESO S		10003
Analysis Model		Default	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
ads Applied	Lead News	C-star	Code Code	0
Acceleration	Load Name	F030 2014	9 8067	Add
Acceleration	02	2030 2014	3.0007	Dalata
				Delete
her Parameters				
her Parameters Modal Load Case		MODAL	~	
her Parameters Modal Load Case Modal Combination Meth	od	MODAL CQC	v v	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	od Response	MODAL CQC Rigid Frequency, f1	~ ~	
her Parameters Modal Load Case Modal Combination Meth	od Response	MODAL COC Rigid Frequency, f1 Rigid Frequency, f2	~ ~	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	iod Response	MODAL CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~ ~ 	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	od Response	MODAL CQC Rigid Frequency, 11 Rigid Frequency, 12 Periodic + Rigid Type	~ ~	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	od Response ion, td Type	MODAL COC Rigid Frequency, 11 Rigid Frequency, 12 Periodic + Rigid Type SRSS		
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	od Response ion, td Type Ial Combination Scal	MODAL COC Rigid Frequency, 11 Rigid Frequency, 12 Periodic + Rigid Type SRSS e Factor		
her Parameters Modal Load Case Modal Combination Meth include Rigd F Earthquake Durat Directional Combination Absolute Direction Modal Damping	iod Response ion, td Type Iel Combination Scal Constant et 0.05	MODAL COC Rigid Frequency, 11 Rigid Frequency, 12 Petrodic + Rigid Type SRSS e Factor	Modfy/Show	

4.2.9 Fuerza cortante dinámica en la base del C.S. Conchopata

Para estructuras regulares, la Norma E.030 (SENCICO, 2018) establece que la F. Cortante basal de la estructura no debe ser inferior al 80% de la F. Cortante basal

estática previamente determinada. No debe ser menos del 90% si hay estructuras irregulares. Se debe elevar el sismo de manera proporcional si no se cumple con lo establecido en la Norma E.030 (SENCICO, 2018). Este proceso se utiliza únicamente para adquirir la cortante de diseño; sin embargo, no se aplica para verificar los desplazamientos.

Figura 58

	TABLE: Base Reactions										
Output Case	Case Type	Step Type	FX	FY	FZ	мх	МҮ	MZ			
			tonf	tonf	tonf	tonf-m	tonf-m	tonf-m			
SDX	LinRespSpec	Max	141.8456	30.3485	0	435.8385	1970.7428	2272.179			
SDY	LinRespSpec	Max	30.7886	142.726	0	2042.0305	446.0627	1454.9087			

Fuerzas cortantes dinámicas en la base

Comprobando Vdin>=0.8*Vest

Según la Norma E.030 (SENCICO, 2018), dado que la edificación es una estructura regular, se deberá aplicar un factor de escala si no cumple con el 80% de la fuerza cortante dinámica.

Figura 59

Fuerzas cortantes dinámicas en la base en el eje X y Y

	FUERZA CORTANTE DE DISEÑO XX-YY								
	V est. (ton) V din. (ton) 80%Vest. Fact. de escala V DISEÑO (ton								
DIRECCIÓN X-X	229.791	141.8456	183.8328	1.296006362	183.8328				
DIRECCIÓN Y-Y	229.791	142.726	183.8328	1.288011995	183.8328				

Comprobando las reacciones en la base con la aplicación de los factores de escala para el diseño.

	TABLE: Base Reactions includes factor scale para diseño														
Output Case	Step Type	FX	FY	FZ	мх	MY	MZ								
		tonf	tonf	tonf	tonf-m	tonf-m	tonf-m								
SXDISEÑO	Max	183.8319	39.3316	0	564.8466	2554.0826	2944.744								
SYDISEÑO	Max	39.6558	183.831	0	2630.1352	574.5288	1873.9225								

Reacciones en la base con los factores de escala para el diseño

4.2.10 Verificación del sistema estructural del C.S. Conchopata

Por la cantidad de placas distribuidas en la edificación, se consideró la estructura como un sistema de muros estructurales en los parámetros sísmicos establecidos. Para justificar esta consideración, se examinarán los resultados con la cortante dinámica que se obtuvo previamente. Las placas deben ser elementos de resistencia sísmica y sobre los que actúa al menos el 70% de la cortante basal para que una estructura se clasifique como muros estructurales, según la Norma E.030 (SENCICO, 2018).

Figura 61

ection Cuttin	g Line			Load Case			Resultant Ford	e Location and An	gle
	Start Point	End P	oint	SXDISENO			Global X	342.534	m
Global X	143	542.0679	m				Global Y	370.5572	m
Global Y	382	359.1143	m	Objects to Include	~ -	-	Global Z	0	m
			m	Columns	U Beams	Braces	Angle	356.718	deg
ntegrated For	ces								
		1	Right Side 2	z		1	Left Side 2	z	
Force	33.8578	5	.7605	14.9314	1	33.8578	5.7605	14.9314	tonf
Moment	5819.70	73 4	746.5482	12037.9041	- F	5819.7073	4746.5482	12037.9041	tonf-n
		Sa	ave Right Side Cu	t		(Save Left Side Cut		

Verificando el sistema estructural en el eje X

Corte en la base del C.S. Conchopata en XX

Nota. Imagen generada del Corte en la base del C.S. Conchopata en la base de la dirección X

Tabla 5

Cortante en el eje X

VDXX=	33.8578
	VDXX (tn)
VPLACA	0
VCOLUMNA	33.8578
%PLACA	0
%COLUMNA	100

Verificando el sistema estructural en el eje Y

Section Cuttin	g Line			Load Case			Resultant Ford	e Location and An	igle
	Start Point	End Point		SYDISENO			Global X	372	m
Global X	68	676	m				Global V	308.5	m
Global Y	310	307	m	Objects to Include			Ciobal 1	0	
			m	Columns	Beams	Braces	Giobal Z	U	m
				Floors	U Walls	🗌 Links	Angle	359.717	deg
Integrated For	ces								
		Rig	ght Side				Left Side		
	1	1	2	Z	T	1	2	Z	
Force	9.2244	70.71	11	10.8257		9.2244	70.7111	10.8257	tonf
Moment	3235.646	2 4089.9	9415	27658.3996		3235.6462	4089.9415	27658.3996	tonf-m
		Save F	light Side C	ut			Save Left Side Cut		

Figura 64

Corte en la base del C.S. Conchopata en YY

Nota. Imagen generada del Corte en la base del C.S. Conchopata en la base de la dirección Y

Tabla 6

Cortante en el eje Y

VDYY=	70.71
	VDYY (tn)
VPLACA	0
VCOLUMNA	70.71
%PLACA	0
%COLUMNA	100

Se concluye que la suposición previa es correcta, ya que las columnas en ambas direcciones absorben más del 70% de la cortante basal del edificio del C.S. Conchopata.

4.2.11 Verificación de derivas de entrepiso del C.S. Conchopata

Según la Norma E.030 (SENCICO, 2018), el desplazamiento relativo máximo del entrepiso no debe superar la fracción de la altura del entrepiso. El tipo de material predominante en la estructura determina estos límites; en este caso, la edificación es de concreto armado y tiene una deriva máxima permitida de 0.007.

Figura 65

			General Data		
oad Combination Name	DERIVA X		Load Combination Name	DERIVA Y	
Combination Type	Linear Add	~	Combination Type	Linear Add	
Notes	Modify/Show No	tes	Notes	Modify/Show	Notes
Auto Combination	No		Auto Combination	No	
х	~ 6	Add	SDY	~ 6	Add
DX	~ 6	Add	SDY	~ 6	Add
		Delete			Delete

Verificando Deriva de entrepiso en X y Y

Derivas por piso en eje X

				TABLE	: Story Dr	ifts				
	Output		Step							
Story	Case	Case Type	Туре	Direction	Drift	Label	х	Y	z	
							m	m	m	DMAX=0.007
T.TECHO	DERIVA X	Combination	Max	Х	0.001871	4028	0	26.37	15.5	CUMPLE
STORY4	DERIVA X	Combination	Max	Х	0.002114	4177	5.96	28.996	13	CUMPLE
STORY3	DERIVA X	Combination	Max	Х	0.002258	4177	5.96	28.996	9.75	CUMPLE
STORY2	DERIVA X	Combination	Max	Х	0.002055	4177	5.96	28.996	6.5	CUMPLE
STORY1	DERIVA X	Combination	Max	Х	0.001063	4082	18.69	28.24	3.25	CUMPLE

Figura 67

Derivas por piso en eje Y

				TABLE	: Story Dr	ifts				
	Output		Step							
Story	Case	Case Type	Туре	Direction	Drift	Label	х	Y	z	
							m	m	m	DMAX=0.007
T.TECHO	DERIVA Y	Combination	Max	Y	0.001207	4047	15.2134	8.52	15.5	CUMPLE
STORY4	DERIVA Y	Combination	Max	Y	0.001699	4082	18.69	28.24	13	CUMPLE
STORY3	DERIVA Y	Combination	Max	Y	0.002044	4033	18.36	26.37	9.75	CUMPLE
STORY2	DERIVA Y	Combination	Max	Y	0.002131	24	1.86	29.2395	6.5	CUMPLE
STORY1	DERIVA Y	Combination	Max	Y	0.001442	24	1.86	29.2395	3.25	CUMPLE

Figura 68

Máxima deriva de piso en X

Máxima deriva de piso en Y

Se observa que en ambas direcciones la deriva de entrepiso cumple con lo exigido, pues esta es menor a la deriva máxima permitida por la Norma E.030 (SENCICO, 2018).

4.2.12 Verificación de torsión en planta del C.S. Conchopata

Es necesario examinar la torsión, una anomalía en la planta. Si existe este impacto en la estructura, se multiplicará por un factor, lo cual disminuirá el factor R y aumentará la fuerza cortante de diseño.

Se verificará en ambas direcciones X-Y; en caso de que la relación sea superior a 1.3, se considerará irregularidad torsional.

_											
			TAB	LE: Diaphragm N	lax Over Av	g Drifts Irregula	ridad tors	ional en	xx		
		Output	Step						Max Loc	Max Loc	Max Loc
	Story	Case	Туре	Item	Max Drift	Avg Drift	Ratio	Label	х	Y	Z
									m	m	m
	T.TECHO	DERIVA X	Max	Diaph D5 X	0.001871	0.001543	1.2120	4028	0	26.37	15.5
	STORY4	DERIVA X	Max	Diaph D4 X	0.002114	0.00179	1.1810	4177	5.96	28.996	13
	STORY3	DERIVA X	Max	Diaph D3 X	0.002258	0.001942	1.1630	4177	5.96	28.996	9.75
	STORY2	DERIVA X	Max	Diaph D2 X	0.002055	0.001772	1.1600	4177	5.96	28.996	6.5
	STORY1	DERIVA X	Max	Diaph D1 X	0.001058	0.000946	1.1190	4177	5.96	28.996	3.25

Diagrama de verificación de torsión en planta en el eje X

Figura 71

Diagrama de verificación de torsión en planta en el eje Y

	TABLE: Diaphragm Max Over Avg Drifts Irregularidad torsional en YY													
	Output	Step							Max Loc	Max Loc				
Story	Case	Туре	Item	Max Drift	Avg Drift	Ratio	Label	Max Loc X	Y	Z				
								m	m	m				
T.TECHO	DERIVA Y	Max	Diaph D5 Y	0.001207	0.001176	1.026	4047	15.2134	8.52	15.5				
STORY4	DERIVA Y	Max	Diaph D4 Y	0.001664	0.001596	1.042	4033	18.36	26.37	13				
STORY3	DERIVA Y	Max	Diaph D3 Y	0.002044	0.001975	1.035	4033	18.36	26.37	9.75				
STORY2	DERIVA Y	Max	Diaph D2 Y	0.002128	0.00207	1.028	4033	18.36	26.37	6.5				
STORY1	DERIVA Y	Max	Diaph D1 Y	0.001317	0.001284	1.026	4033	18.36	26.37	3.25				

Se puede concluir que, por condiciones de simetría en el edificio, tanto en masa como en rigidez, no se presentan efectos importantes de torsión. Asimismo, cumple con lo asumido que la estructura es regular.

Figura 72

Diagrama de verificación de piso b

	TABLE: Story Stiffness-Verificando piso blando XX														
Story	Output Case	Case Type	Shear X	Drift X	Stiff X	Shear Y	Drift Y	Stiff Y	Rigidez X	<70%					
			tonf	m	tonf/m	tonf	m	tonf/m							
T.TECHO	SDX	LinRespSpec	16.188	0.001	25178.910	3.022	0.000	22036.46	25179	17625					
STORY4	SDX	LinRespSpec	68.618	0.001	69175.855	14.088	0.000	58970.56	43997	30798					
STORY3	SDX	LinRespSpec	110.559	0.001	105124.189	24.169	0.000	86504.83	35948	25164					
STORY2	SDX	LinRespSpec	137.318	0.001	154353.223	30.705	0.000	112821.61	49229	34460					
STORY1	SDX	LinRespSpec	149.231	0.000	390307.277	33.324	0.000	250962.06	235954						

4.2.13 Junta sísmica del C.S. Conchopata

Toda estructura debe estar separa de las estructuras vecinas, desde el nivel de terreno natural para evitar el contacto entre ellas durante un sismo. La Norma E.030 (SENCICO, 2018) indica que debe existir una separación mínima "s".

Figura 73

Junta sísmica

JUNTA SÍSMICA						
Dirección	D máx. (cm)	2/3 D máx. (cm)	S/2 (cm)	Junta Sísmica (cm)		
Dirección X-X	2.783	1.855	4.65	5.00		
Dirección Y-Y	2.562	1.708	4.65	5.00		

Como se observa en la tabla, se deberá colocar una junta sísmica de 5 cm en

ambas direcciones X y Y.

Figura 74

Combinaciones más envolventes

icial Data					
oad Combination Name	ENVOLVENTE Envelope Modfy/Show Notes				
Combination Type			7		
lotes			Load Combinations		
Auto Combination	No	Combinations Click to:			
fine Combination of Load Case/Combo Results		DERIVA X DERIVA X	Add New Combo		
Load Name	Scale Factor		ENVOLVENTE	Add Copy of Combo	
1=1.4CM+1.7CV	✓ 1	Add	ENVOLVENTE PUSH		
2=1.25(CM+CV)+-SXDISENO	1	Delete	SXDISENO	Modify/Show Combo	
3=1.25(CM+CV)+-SYDISENO	1		SYDISENO	Delete Combo	
4=0.9CM+-SXDISENO	1		U2=1.25(CM+CV)+-SXDISENO	Delete Combo	
5=0.9CM+-SYDISENO	1		U3=1.25(CM+CV)+-SYDISENO		
			U5=0.9CM+-SYDISENO	Add Default Design Combos	
		1		Convert Combos to Nanlinear Cases	

Verificando los warning

Figura 76

Configurando código de D.Sismorresistente del ACI 318-08

Diseño de acero en la estructura

Design Load Combinations Selection - Concrete Strength Crack Width Choose Combinations DERIVA X DERIVA Y ENVOLVENTE PUSH PESO SISMICO SYDISENO U1=1.4CM+1.7CV U2=1.25(CM+CV)+-SXDISENO U3=1.25(CM+CV)+-SXDISENO U4=0.9CM+-SXDISENO U5=0.9CM+-SYDISENO U5=0.9CM+-SYDISENO	The Design Combinations
--	-------------------------

Cuantía de refuerzo en los entrepisos

4.2.14 Análisis de materiales del C.S. Conchopata

Modelos de idealización de las curvas f-E del acero y sus propiedades

Figura 79

Modelos de idealización Esfuerzo-Deformación del Acero

Concreto No Confinado-Modelo de Hognestad

Figura 80

Concreto No Confinado-Modelo de Hognestad

Concreto Confinado- Modelo de Kent y Park

Figura 81

Concreto Confinado- Modelo de Kent y Park

Concreto Confinado Modelo de Mander

Figura 82

Concreto Confinado Modelo de Mander

4.2.15 MNL para secciones y elementos del C.S. Conchopata

Diagrama de Momento-Curvatura. Es esencial conocer la relación momento-curvatura de las secciones de los componentes estructurales, con el objetivo de determinar cuál es la máxima capacidad a flexión y la capacidad de ductilidad de curvatura, para comparar estos valores y las demandas obtenidas en el diseño sismorresistente. Para el análisis no lineal, es importante comprender la relación momento-curvatura para así hallar la rigidez de cada rama del diagrama histerético que es necesario para precisar la no linealidad del material. La relación momentocurvatura es el cimiento fundamental del análisis estático no lineal y del análisis dinámico no lineal (Medina, 2012).

Figura 83

Momento Curvatura y Ductilidad-Viga simplemente Reforzado

Momento Curvatura y Ductilidad-Viga con Doble Refuerzo

Longitud Plástica - Rotación y Deflexión Máxima

Deformación Máxima y Ductilidad - Momento Rotación

Caso 1: Pro	opuesta Sawye	er	Caso	2: Prop	uesta Mattock	
Consideraciones: La zon d/4 masallá de la sec flexionante se reduce a	a de cedencia cción en que el My y además N	se extiende a momento ⁄ly/Mu = 0.85	Consideraciones delrecubrimiento a del los parámetros de tensio	: Se igr ormacio ones de	noró el descono ones elevadas concreto a co	chamiento y se emplearon mpresión del ACI
Lp = 0.2	25d + 0.075Z		Lį	p = 0.5	d + 0.05Z	
d: Altura út	il de la sección		z: distancia desde la	secció	n crítica al pur	to de inflexión
Lp	= 0.582		Lp	=	0.568	
Rotación elástica por integración	Rotació	n inelastica	Deflexión elástica po integración	or	Deflexió	n inelástica
$\theta_e = \int_0^L \phi_y\left(\frac{x}{L}\right) dx$	$\theta_p = (q$	$\phi_u - \phi_y)Lp$	$\Delta_e = \int_0^L \phi_y\left(\frac{x}{L}\right) x dx$	lx	$\Delta_p = (\phi_u -$	$(\phi_y)L_p\left(L-\frac{L_p}{2}\right)$
$\theta_e = \phi_y \left(\frac{L}{2}\right) = 0.0149$	θρ	= 0.021584	$\Delta_e = \phi_y \left(\frac{L}{2}\right) \left(\frac{2L}{3}\right) = 5.9$	9203	Δр	= 12.251
Rotac	ión última			Deflexić	ón última	
$\theta_u =$	$\theta_e + \theta_p$			$\Delta_u =$	$\Delta_e + \Delta_p$	
θυ	= 0.036484		Δυ	=	18.17135	
Condición	θ (Rad)	Momento (T-m)	Condición		∆ (cm)	Momento (T-m)
Inicial	0	0	Inicial		0	0
Cedencia	0.0149	29.9	Cedencia		5.9203	29.9
Última	0.036484	31.16	Última		18.17135	31.16
Diagrama de N	/lomento Ro	tación	-	Δ (α	cm)	
35			35			
25			30			
20			20			
15						
			15			
10			15 10			
10 5			15 10 5			
10 5 0 0 0.01	0.02 0.0	03 0.04			10 1	5 20
	0.02 0.0	03 0.04			10 1	5 20
10 5 0 0 0 0.01	0.02 0.0 1 por rotación)3 0.04		tilidad p	10 1 por deflexión	5 20
$\frac{10}{5} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0.02 0.0 β por rotación 	3 0.04 = 2.4485906	$\begin{array}{c c} 15\\ 10\\ 5\\ 0\\ 0\\ 0\\ \end{array}$	tilidad p	10 1 por deflexión uΔ	5 20
$\begin{array}{c} 10\\5\\0\\0\\0\end{array} \\ 0\\0\end{array} \\ 0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0\\0$	0.02 0.0 1 por rotación 	3 0.04 = 2.4485906 carga aplicada F	$\begin{array}{c c} 15\\ 10\\ 5\\ 0\\ 0\\ 0\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 1$	tilidad p	10 1 por deflexión uΔ	5 20

La curvatura de una sección. Se define como la rotación por longitud unitaria del miembro, la cual se relaciona con las deformaciones en sus fibras extremas y el eje neutro.

Por definición, se puede calcular la rotación de un miembro, integrando las curvaturas a lo largo del mismo.

$$\theta = \int \phi \, \mathrm{d}x$$

Al ocurrir una deformación por rotación en un elemento estructural, se tiene lo siguiente:

La rotación entre los puntos A y B del miembro se define de la siguiente manera:

$$\theta_{AB} = \int_{A}^{B} \phi \, \mathrm{d}x$$

La deflexión del punto A respecto al punto B del miembro se define de la siguiente manera:

$$\Delta_{AB} = \int_{A}^{B} x \, \mathrm{d}\theta = \int_{A}^{B} x \cdot \phi \, \mathrm{d}x$$

Considerando una viga en voladizo. La cual se deforma por flexión debido a una carga puntual en su extremo, se obtiene que, la región de curvatura inelástica se extiende sobre una parte de la longitud de la misma que se idealiza de forma práctica como lp, donde el momento actuante es superior al cedente de la sección. En las regiones donde se presentan grietas, aumenta la curvatura de la sección debido a la pérdida de rigidez. El área sombreada representa la rotación inelástica que puede ocurrir en la articulación plástica, en la cercanía de la sección crítica. Se puede reemplazar por un rectángulo equivalente, que tenga la misma área que la distribución real de curvatura inelástica.

Análogamente, para el caso de las deflexiones se tiene:

Por otra parte, la contribución elástica a la rotación en toda la longitud del miembro, se determina integrando la curvatura en condición elástica (fe), que presenta el área no sombreada del diagrama de curvatura

$$\theta_e = \int_A^B \phi_e \, \mathrm{d}x = \int_A^B \phi_y \cdot \left(\frac{x}{L}\right) \, \mathrm{d}x$$

La distancia x se mide desde A hasta B

$$\theta_u = \theta_e + \theta_p = \int_A^B \phi_e \, \mathrm{d}x + \left(\phi_u - \phi_y\right) \cdot l_p = \phi_y \cdot \frac{L}{2} + \left(\phi_u - \phi_y\right) \cdot l_p$$

Análogamente, para el caso de las deflexiones se tiene:

$$\Delta_{p} = \theta_{p} \cdot x = \left(\phi_{u} - \phi_{y}\right) \cdot l_{p} \cdot \left(L - \frac{l_{p}}{2}\right)$$
$$\Delta_{e} = \int_{A}^{B} \phi_{e} \cdot x \, \mathrm{d}x = \int_{A}^{B} \phi_{y} \cdot \left(\frac{x}{L}\right) \cdot x \, \mathrm{d}x$$

Deflexión ultima

$$\Delta_u = \Delta_e + \Delta_p = \int_A^B \phi_e \cdot x \, \mathrm{d}x + \left(\phi_u - \phi_y\right) \cdot l_p \cdot \left(L - \frac{l_p}{2}\right) = \phi_y \cdot \frac{L}{2} \cdot \left(\frac{2L}{3}\right) + \left(\phi_u - \phi_y\right) \cdot l_p \cdot \left(L - \frac{l_p}{2}\right)$$

4.2.16 La Curva Capacidad del Análisis Pushover

La curva de capacidad (desplazamiento del último nivel en comparación con la fuerza cortante basal) de una estructura o elemento se determina mediante este tipo de análisis estático incremental. Se fundamenta en la implementación de un patrón de cargas laterales que se van incrementando hasta que se llega a una condición de falla o a un punto de desempeño.

Cada componente estructural recibe rótulas plásticas según su tipo de falla. El patrón de cargas laterales debe comenzar con una condición de carga gravitacional no lineal (se mantiene durante el análisis). A partir de una rigidez inicial, la estructura comienza con una respuesta elástica. Con el aumento de las fuerzas, los elementos superan su fluencia y se produce una reducción de la rigidez y resistencia, la estructura logra ingresar al rango inelástico en relación con su ductilidad.

Figura 87

Gráfica de deformación última análisis Pushover

Nota. Representación de la deformación última con el análisis Pushover

4.2.17 Características del Análisis Pushover

- Convierte un sistema con varios grados de libertad en un sistema equivalente a uno.
- Permite determinar la Curva de Capacidad.
- Permite calcular y evaluar la ductilidad de una estructura.
- Identifica la secuencia de agrietamiento, los mecanismos de falla, la fluencia y la falla de los elementos estructurales, los estados límites de servicios, la historia de deformaciones y cortantes en la estructura y la curva de capacidad.
- Limitaciones de Pushover.

La tasa de resistencia µstrength debe ser inferior al valor máximo µmáx. Para confirmar su estabilidad dinámica, se debe realizar un proceso de análisis dinámico no lineal si esta relación no se cumple. La tasa de resistencia µstrength es un indicador de la extensión de la no linealidad, mientras que la tasa máxima es un indicador de la degradación del sistema. La degradación es significativa para las estructuras con una demanda no lineal superior a µmáx. El método de coeficientes define Ustrength Y Pmáx. La respuesta global de la estructura no debe verse afectada por los modos de vibración superiores. Un

primer análisis modal que tenga en cuenta suficientes modos para sumar el 90% de la masa participativa y un segundo análisis modal para verificarlo. Si el cortante en cualquier nivel obtenido a partir del primer análisis excede en un 130% al cortante obtenido en el segundo análisis, deben considerarse significativos los modos superiores. Si fuera el caso, debe llevarse a cabo, además del Análisis Estático No Lineal (NSP), un Análisis Dinámico Lineal (LDP).

4.2.18 Procedimiento de Análisis de Pushover

- Definir el modelo matemático de la estructura que incorpore las características fuerza- deformación no lineal de los elementos según las Tablas del ASCE/SEI 41-13.
- Definir el nodo de control, será ubicado en el centro de masa del último nivel del edificio
- 3. Aplicar el patrón de carga lateral; será proporcional a la forma del modo fundamental de la estructura e incrementada monotónicamente.
- 4. Obtener la curva de capacidad registrando la fuerza de corte basal y el desplazamiento del nodo de control, así como las fuerzas y deformaciones de cada elemento para luego compararlas con sus respectivos diagramas (M θ). Cada incremento de carga lateral es un análisis separado que parte del fin de la última aplicación de carga, por ello a los resultados del último análisis se debe agregar los valores de carga lateral, rotaciones, desplazamientos correspondientes al análisis previo.
- 5. Obtener la curva de capacidad idealizada.

Gráfica de Curva de capacidad (ASCE/SEI 41-13)

Base shear

Nota. La curva de capacidad (ASCE/SEI 41-13)

4.2.19 Método de los coeficientes de desplazamiento, FEMA 356

Deben ser aplicados al menos dos distribuciones verticales de carga lateral, seleccionando un patrón de cada grupo a continuación:

<u>Grupo 1</u>: a) Distribución vertical de carga proporcional a los valores de

Cv.

$$C_{\nu x} = \frac{W_X h_x^k}{\sum_{i=1}^n W_{Xi} h_{xi}^k}$$

Cvx = factor de distribución vertical de carga.

k = 2.0 para $T \ge 2.5$ seg, k = 1.0 para $T \le 0.5$ seg

wx = Porción del peso total de la estructura en el nivel x

hx = Altura (en pies) desde la base hasta el nivel x

wxi = Porción del peso total de la estructura en el nivel i

hxi = Altura (en pies) desde la base hasta el nivel i

Nota. Válido cuando la masa participativa en modo fundamental $\beta 1 \ge 75\%$.

Figura 89

Grupo 1: a) Fuerzas proporcional a CV

Nota. Gráfica de las Fuerzas proporcional al factor de distribución vertical de carga.

Grupo 1: b) Distribución vertical proporcional a la forma del modo

fundamental de vibración en la dirección bajo consideración.

Figura 90

Nota. Gráfica de las fuerzas proporcionales al modo fundamental de vibración

Grupo 1: c) Distribución vertical proporcional a la distribución de fuerzas de piso, calculadas al combinar respuestas modales de un análisis espectral del edificio, incluyendo suficientes modos que sumen al menos el 90% de la masa total del edificio, y utilizando el espectro apropiado.

Figura 91

Grupo 1: c) Fuerzas proporcional de fuerzas de piso

Nota. Gráfica de las fuerzas proporcionales a las fuerzas de piso

Grupo 2: d) Distribución de fuerzas laterales en cada nivel, proporcional

a la masa total de cada nivel.

Figura 92

Grupo 2: d) Fuerzas proporcional a la masa total por nivel

Nota. Gráfica de las fuerzas proporcionales a la masa total por nivel

4.2.20 Método del espectro de capacidad, ATC-40

Partiendo del modelo de cálculo de la estructura y tomando en cuenta cargas gravitacionales, debe aplicarse un patrón de cargas laterales, proporcionales al producto entre la masa y la forma modal 1 (modo fundamental).

$$F_{\chi} = \frac{W_{\chi} \phi_{\chi}}{\sum W_{\chi} \phi_{\chi}} V$$

Fuerzas al producto entre la masa y f. modal 1

Nota. Gráfica de las Fuerzas producto a la masa y forma modal 1

4.2.21 Método De Coeficientes de desplazamientos, FEMA 356

Método De Coef. de desplazamientos FEMA 356 con distribución vertical de carga proporcional a los valores de Cv.

4.2.22 Cálculo del peso sísmico del C.S. Conchopata

Figura 94

Peso sísmico

mass ources	Click to:		
PESO SISMICO	Add New Mass Source		
	Add Copy of Mass Source		
	Modify/Show Mass Source		
	Delete Mass Source		
	Default Mass Source		
	PESO SISMICO	~	
OK	Cancer		
is Source Data	Cancer		
Iss Source Data	Mass Multipliers for Load Patte	Load Patterns	Multiplier
Iss Source Data Aass Source Name PESO SISMICO as Source	Mass Multiplers for Load Patte	Load Patterns ern 1	Multiplier Add
Is Source Data Aass Source Name ESO SISMICO Element Self Mass	Mass Multiplers for Load Patter	Load Patterns ern V 1 0.25	Multiplier Add
Is Source Data Mass Source Name FESO SISMICO Element Self Mass Additional Mass	Mass Multiplers for Load Patter	Load Patterns ern 1 0.25	Multiplier Add
Is Source Data Aass Source Name ESO SISMICO Struce Element Self Mass Additional Mass Specified Load Patterns	Load Patter	Load Patterns ern 1 0.25	Multiplier Add 5 Modify Delete
Additional Mass Specified Load Patterns Adjust Diaphragm Lateral Mass to Move Mass Centroid by:	Load Patte	Load Patterns ern 0.25	Multiplier Add 5 Modify Delete
Additional Mass Specified Load Patterns Adjust Diaphragm Lateral Mass to Move Mass Centroid by: This Ratio of Diaphragm Width in X Direction	Mass Multiplers for Load Path LD LL Mass Options Include Latera	Load Patterns ern 0.25	Multiplier Add 5 Modify Delete

Figura 95

Peso sísmico por niveles del ETABS

町 Sto	ry Forces										_		×
File	Edit Format	-Filter-Sort Sel	ect Options										
Units: /	As Noted H	Hidden Columns: N	lo Sort: N	lone				Story Forces					~
Filter:	([Output Case] = 'F	ESO SISMICO') AN	ID ([Location] = 'B	iottom')									
	Story	Output Case	Case Type	Step Type	Step Number	Location	P kgf	VX kgf	VY kgf	T kgf-m	MX kgf-m	M kgf	Y -m
	T.TECHO	PESO SISMICO	Combination			Bottom	98484.55	0	0	0	1068594.23	-804	4366.39
	STORY4	PESO SISMICO	Combination			Bottom	482379.68	5.931E-05	-7.645E-05	-0.001882	6902624.36	-3973	3897.83
	STORY3	PESO SISMICO	Combination			Bottom	866276.72	0.0001091	-0.000126	-0.003316	12736704.61	-7143	3463.14
	STORY2	PESO SISMICO	Combination			Bottom	1250173.76	0.0001454	-0.0001415	-0.004124	18570784.87	-10313	3028.45
	STORY1	PESO SISMICO	Combination			Bottom	1634070.79	0.0001601	-0.0001372	-0.004293	24404865.12	-13482	2593.76
•	SEMISOTANO	PESO SISMICO	Combination			Bottom	245402.86	-4892.27	519.97	136312.6	5603277.42	-2192	2264.99
Record	ecord: << < 6 > >> of 6 Add Tables Done												

Peso sísmico por nivel y peso acumulado

4.2.23 Cálculo de la distribución de fuerzas del C.S. de Conchopata

Figura 97

Fuerzas por piso del sismo dinámico en X

町 Sto	y Forces										-		\times
File	Edit Format-	Filter-Sort Sel	lect Options										
Units: A	s Noted H	lidden Columns: N	lo Sort: N	one				Story Forces					~
Filter: (Output Case] = 'S	DX') AND ([Locati	on] = 'Bottom')										
	Story	Output Case	Case Type	Step Туре	Step Number	Location	P kgf	VX kgf	VY kgf	T kgf-m	MX kgf-m	MY kgf-r	n
	T.TECHO	SDX	LinRespSpec	Max		Bottom	0	16188.92	3022.17	219772.02	7555.43	404	72.31
	STORY4	SDX	LinRespSpec	Max		Bottom	0	68619.1	14087.38	1093155.66	52680.19	2602	13.07
	STORY3	SDX	LinRespSpec	Max		Bottom	0	110561.06	24168.46	1808670.87	130738.87	6117	69.97
	STORY2	SDX	LinRespSpec	Max		Bottom	0	137319.41	30704.16	2259751.99	229878.09	10449	68.24
	STORY1	SDX	LinRespSpec	Max		Bottom	0	149232.63	33323.62	2454353.35	337525.65	15165	33.89
•	SEMISOTANO	SDX	LinRespSpec	Max		Bottom	1332.65	6271.97	1765.3	138010.24	30735.17	121	64.82
Record	<< <	6 >		Add Tables.	. (Done							

Figura 98

Fuerzas por piso del sismo dinámico en Y

町 Stor	ry Forces										-		\times
File	Edit Format-	Filter-Sort Sel	lect Options										
Units: A	As Noted H	lidden Columns: N	lo Sort: N	one				Story Forces					
Filter: ([Output Case] = 'S	DY') AND ([Locati	on] = 'Bottom')										
	Story	Output Case	Case Type	Step Type	Step Number	Location	P kgf	VX kgf	VY kgf	T kgf-m	MX kgf-m	MY kgf-i	í m
	T.TECHO	SDY	LinRespSpec	Max		Bottom	0	3139.21	16298.7	164708.99	40746.75	78	348.04
	STORY4	SDY	LinRespSpec	Max		Bottom	0	15065.27	68732.65	732523.06	259912.25	563	326.15
	STORY3	SDY	LinRespSpec	Max		Bottom	0	25245.82	114079.28	1226107.43	623825.3	137	7913.2
	STORY2	SDY	LinRespSpec	Max		Bottom	0	31195.9	144235.34	1544985.17	1081884.87	2388	328.92
	STORY1	SDY	LinRespSpec	Max		Bottom	0	33322.53	157921.28	1683415.04	1583604.87	34	6711.8
•	SEMISOTANO	SDY	LinRespSpec	Max		Bottom	6485.91	1751.26	8448.91	85288.93	149574.64	480	092.56
Record	Record: << 6 >>>> of 6 Ad											Done	

Figura 99

Fuerzas por piso por el caso participación modal

町 Sto	ry Forces										_		×
File	Edit Format-	Filter-Sort Sel	lect Options										
Units: A	As Noted H	Hidden Columns: N	lo Sort: N	lone				Story Forces					~
Filter: ([Output Case] = 'l	IODAL') AND ([Ste	p Number] = 2) A	ND ([Location] =									
	Story	Output Case	Case Type	Step Туре	Step Number	Location	P kgf	VX kgf	VY kgf	T kgf-m	MX kgf-m	N kg	IY f-m
	T.TECHO	MODAL	LinModEigen	Mode	2	Bottom	0	15227.66	4552.13	-159468.27	-11380.32	3	8069.15
	STORY4	MODAL	LinModEigen	Mode	2	Bottom	0	75845.64	22600.38	-1017324.18	-84364.86	28	2893.15
	STORY3	MODAL	LinModEigen	Mode	2	Bottom	0	128058.76	39450.06	-1770956.93	-212225.19	69	7986.39
	STORY2	MODAL	LinModEigen	Mode	2	Bottom	0	158417.66	50424.37	-2197527.98	-375905.15	121	2324.64
	STORY1	MODAL	LinModEigen	Mode	2	Bottom	0	168960.64	54663.08	-2339420.27	-553500.3	176	1330.38
F	SEMISOTANO	MODAL	LinModEigen	Mode	2	Bottom	1800.48	-7002.84	-2718.59	137739.84	41753.24	-2	0950.58
Record: << < 6 > >> of 6 Add Tables													

Fuerzas por piso por carga muerta

町 Sto	ry Forces										-		\times
File	Edit Format-	Filter-Sort Sel	ect Options										
Units: /	As Noted H	lidden Columns: N	o Sort: N	one				Story Forces					~
Filter: ([Output Case] = 'C	M.) AND ([Location	n] = 'Bottom')										
	Story	Output Case	Case Type	Step Type	Step Number	Location	P kgf	VX kgf	VY kgf	T kgf-m	MX kgf-m	MY kgf-	m
	T.TECHO	СМ	LinStatic			Bottom	94127.58	0	0	0	1023493.23	-768	607.04
	STORY4	СМ	LinStatic			Bottom	458333.01	5.601E-05	-7.127E-05	-0.001734	6581760.4	-3780	850.97
	STORY3	СМ	LinStatic			Bottom	822540.33	0.000103	-0.0001172	-0.00302	12140077.69	-6793	128.77
	STORY2	СМ	LinStatic			Bottom	1186747.65	0.000137	-0.0001309	-0.003739	17698394.99	-9805	406.57
	STORY1	СМ	LinStatic			Bottom	1550954.97	0.0001505	-0.0001269	-0.003886	23256712.28	-12817	584.37
•	SEMISOTANO	СМ	LinStatic			Bottom	231295.55	-4835.35	482.61	134707.46	5288712.52	-2062	981.86
Record	cord: «< < 6 > >> of 6 Done Done												

Grupo 1: a) Distribución F. proporcional a CV en el eje X

									-	-					
		1	11	1		MÉTODO DE	LOS COEFI	CIENTES DE DES	PLAZAMIENTO (F	EMA 356)	1				
				V	G1:Dis /álido cu	tribución v Jando la n	vertical de nasa part	e carga propo icipativa en i	orcional a los modo fundam	valores de (nental $\beta 1 \ge 7$	Cv 5%.				
	Deben s	er aplicad	los al	menos do	os distril	buciones v	verticales	de carga lat	teral, selecci	onando un pa	atrón de	cada grupo	a continu	ación:	
		FAC	TOR (d	x)*				0.08909897	=			100	0.00 Kaf		
	fue	erza Corta	nte del	Edificio V					=			1492	32.63 Kqf		
	DISTRIBUCIÓN DE FUERZA DIRECCIÓN X - X														
									124544001435						α·Cv
Story	Load Case/Combo	Location	P	vx	VY	φ	m	PESO	Wx·φx	(₩xφx/Σ₩xφx)	Cv	Fn = Vn - Vn+1	Cv	Story	FUERZA LATERAL PARA LA DIRECCIÓN X-X
			kgf	kgf	kgf		Kg (acum)	Kg			kgf-m	kgf-m	0.089099		Kgf
T.TECHO	SD X-X	Bottom	0	16188.92	3022.17	15227.66	94127.58	94127.58	1433342785	0.01	0.1090	16188.92	0.355555	5.00	3990.56
STORY4	SD X-X	Bottom	0	68619.1	14087.4	75845.64	458219.52	458333.01	27783221234	0.22	0.3564	52430.18	0.3563941	4.00	3999.98
STORY3	SD X-X	Bottom	0	110561.06	24168.5	128058.76	822313.36	822540.33	42947396955	0.34	0.2673	41941.96	0.2672969	3.00	3000.00
STORY2	SD X-X	Bottom	0	137319.41	30704.2	158417.66	1186407.2	1186747.65	36028353232	0.29	0.1782	26758.35	0.178198	2.00	2000.00
STORY1	SD X-X	Bottom	0	149232.63	33323.6	168960.64	1550501	1550954.97	16351687230	0.13	0.0891	11913.22	0.089099	1.00	1000.00

Grupo 1: b) Distribución vertical proporcional a la f. del modo fundamental (F.M.F)

de vibración.

Figura 102

Grupo 1: b) Distrib. F. proporcional a F.M.F eje X

						MÉTODO DE	LOS COEFIC	CIENTES DE DES	PLAZAMIENTO (F	EMA 356)					
	G	1:Distrib	ución	vertical pr	oporcio	nal a la fo	rma del n	nodo fundam	nental de vibr	ación en la c	direcciór	n bajo consid	eración.		
								-							
	Deben s	er aplicad	los al	menos do	os distrit	ouciones v	verticales	de carga la	teral, selecci	onando un p	atrón de	cada grupo	a continua	ación:	
		FAC	TOR (x)*				0.355555	=			100	0.00 Kgf		
	fue	rza Corta	nte de	I Edificio V					-			1492	32.63 Kgf		
	DISTRIBUCIÓN DE FUERZA DIRECCIÓN X - X														
									124544001435						α·φ
Story	Load Case/Combo	Location	Р	vx	VY	φ	m	PESO	₩х∙фх	(Ψxφx/ΣΨxφx)	Cv	Fn = Vn - Vn+1	φ	Story	FUERZA LATERAL PARA LA DIRECCIÓN X-X
			kgf	kgf	kgf		Kg (acum)	Kg			kgf-m	kgf-m	0.355555		Kgf
T.TECHO	SD X-X	Bottom	0	16188.92	3022.17	15227.66	94127.58	94127.58	1433342785	0.01	0.1090	16188.92	0.355555	5.00	1000.00
STORY4	SD X-X	Bottom	0	68619.1	14087.4	75845.64	458219.52	458333.01	27783221234	0.22	0.3564	52430.18	60617.98	4.00	170488335.14
STORY3	SD X-X	Bottom	0	110561.06	24168.5	128058.76	822313.36	822540.33	42947396955	0.34	0.2673	41941.96	52213.12	3.00	146849629.45
STORY2	SD X-X	Bottom	0	137319.41	30704.2	158417.66	1186407.2	1186747.65	36028353232	0.29	0.1782	26758.35	30358.9	2.00	85384539.66
STORY1	SD X-X	Bottom	0	149232.63	33323.6	168960.64	1550501	1550954.97	16351687230	0.13	0.0891	11913.22	10542.98	1.00	29652177.58

<u>Grupo 1</u>: c) Distribución vertical proporcional a la distribución de fuerzas de piso en

el eje X

Figura 103

Grupo 1: c) Distrib. Proporcional a la Distr. F de piso eje X

						MÉTODO DE	LOS COEFI	CIENTES DE DES	PLAZAMIENTO (F	EMA 356)		·			
				G1	:Distrib	ución verti	cal propo	orcional a la	distribución c	le fuerzas de	piso.				
			Esta	distribució	n debe	ser utiliza	da cuand	o el período	del modo fur	ndamental ex	cede 1.	0 segundo			
ombinar resp	ouestas modales	de un an	álisis	espectral	del edi	icio, inclu	vendo su	ficientes mo	dos que sum	en al menos	el 90%	de la masa t	otal del e	dificio, y	utilizando el espe
		FAC		v)*			,	0.355555				100	0 00 Kaf		•
	fuerza Cortante del Edificio V = 149232.63 Kqf														
	DISTRIBUCIÓN DE FUERZA DIRECCIÓN X - X														
									124544001435						α∙Fn
Story	Load Case/Combo	Location	P	vx	VY	φ	m	PESO	Wx·φx	(Ψxφx/ΣΨxφx)	Cv	Fn = Vn - Vn+1	Vn+1	Story	FUERZA LATERAL PARA LA DIRECCIÓN X-X
			kgf	kgf	kgf		Kg (acum)	Kg			kgf-m	kgf-m	0.355555		Kgf
T.TECHO	SD X-X	Bottom	0	16188.92	3022.17	15227.66	94127.58	94127.58	1433342785	0.01	0.1090	16188.92	0.355555	5.00	1000.00
STORY4	SD X-X	Bottom	0	68619.1	14087.4	75845.64	458219.52	458333.01	27783221234	0.22	0.3564	52430.18	52430.18	4.00	147460111.66
STORY3	SD X-X	Bottom	0	110561.06	24168.5	128058.76	822313.36	822540.33	42947396955	0.34	0.2673	41941.96	41941.96	3.00	117961946.82
STORY2	SD X-X	Bottom	0	137319.41	30704.2	158417.66	1186407.2	1186747.65	36028353232	0.29	0.1782	26758.35	26758.35	2.00	75257976.97
STORY1	SD X-X	Bottom	0	149232.63	33323.6	168960.64	1550501	1550954.97	16351687230	0.13	0.0891	11913.22	11913.22	1.00	33505983.60

Grupo 2: d) Distribución de fuerzas laterales en cada nivel, proporcional a la masa

total de cada nivel.

Figura 104

Grupo 2: d) Distrib. de F. proporcional a la masa eje X

						MÉTODO DE	LOS COEFIC	CIENTES DE DES	PLAZAMIENTO (F	EMA 356)					
			G2:	Distribucio	ón de fu	erzas late	rales en o	cada nivel, p	proporcional a	a la masa tota	al de ca	da nivel.			
								-							
	Deben se	er aplicad	los al	menos do	s distrib	ouciones v	/erticales	de carga la	teral, seleccio	onando un pa	atrón de	cada grupo	a continua	ación:	
		FAC	FOR (r)*				0.355555	=			100).00 Kaf		
	fuo	rza Cortar	ah ata	, I Edificio V					_			1492	32.63.Kaf		
	DISTRIBUCIÓN DE FUERZA DIRECCIÓN X - X														
									124544001435						α·m
Story	Load Case/Combo	Location	P	vx	VY	φ	m	PESO	₩х∙фх	(Ψxφx/ΣΨxφx)	Cv	Fn = Vn - Vn+1	m	Story	FUERZA LATERAL PARA LA DIRECCIÓN X-X
			kgf	kgf	kgf		Kg (acum)	Kg			kgf-m	kgf-m	0.355555		Kgf
T.TECHO	SD X-X	Bottom	0	16188.92	3022.17	15227.66	94127.58	94127.58	1433342785	0.01	0.1090	16188.92	0.355555	5.00	1000.00
STORY4	SD X-X	Bottom	0	68619.1	14087.4	75845.64	458219.52	458333.01	27783221234	0.22	0.3564	52430.18	364091.94	4.00	1024010181.27
STORY3	SD X-X	Bottom	0	110561.06	24168.5	128058.76	822313.36	822540.33	42947396955	0.34	0.2673	41941.96	364093.84	3.00	1024015525.02
STORY2	SD X-X	Bottom	0	137319.41	30704.2	158417.66	1186407.2	1186747.65	36028353232	0.29	0.1782	26758.35	364093.84	2.00	1024015525.02
STORY1	SD X-X	Bottom	0	149232.63	33323.6	168960.64	1550501	1550954.97	16351687230	0.13	0.0891	11913.22	364093.84	1.00	1024015525.02

Patrón de cargas laterales, proporcionales al producto entre la masa y la forma modal

1 (modo fundamental).

Figura 105

Cargas laterales, entre la masa y forma modal 1 en el eje X

						MÉT	ODO DEL ES	SPECTRO DE CAP	PACIDAD (ATC-40)					
Partiendo	del modelo de c	álculo de	la es	tructura y	tomand	o en cuer	ta cargas	s gravitacion	ales,debe ap	licarse un pa	atrón de	cargas later	ales, prop	orcional	es al producto
					e	ntre la ma	sa y la fo	rma modal 1	(modo funda	amental).					
								-		,					
		EAC		*				0.40400045				100	0.00 Kaf		
		FAC		x)* 				0.13129245	=			100	0.00 Kgi		
	fue	erza Cortar	nte de	Edificio V					=			1492	32.63 Kgt		
							, <i>,</i> .								
						DIST	RIBUCION	DE FUERZA	DIRECCION X	- X					1
									124544001435						((w·φ)/(Σw·φ))·V
Story	Load Case/Combo	Location	Р	vx	VY	φ	m	PESO	Wx·φx	(Ψxφx/ΣΨxφx)	Cv	Fn = Vn - Vn+1	φ))	Story	FUERZA LATERAL PARA LA DIRECCIÓ X-X
			kgf	kgf	kgf		Kg (acum)	Kg			kgf-m	kgf-m	0.1312925		Kgf
T.TECHO	SD X-X	Bottom	0	16188.92	3022.17	15227.66	94127.58	94127.58	1433342785	0.01	0.1090	16188.92	0.355555	5.00	53060.41
STORY4	SD X-X	Bottom	0	68619.1	14087.4	75845.64	458219.52	458333.01	27783221234	0.22	0.3564	52430.18	0.2230796	4.00	33290.75
STORY3	SD X-X	Bottom	0	110561.06	24168.5	128058.76	822313.36	822540.33	42947396955	0.34	0.2673	41941.96	0.3448371	3.00	51460.95
STORY2	SD X-X	Bottom	0	137319.41	30704.2	158417.66	1186407.2	1186747.65	36028353232	0.29	0.1782	26758.35	0.2892821	2.00	43170.33
STORY1	SD X-X	Bottom	0	149232.63	33323.6	168960.64	1550501	1550954.97	16351687230	0.13	0.0891	11913.22	0.1312925	1.00	19593.12

Figura 106

Patrón de fuerzas laterales en la dirección X-AENL

								AENL							
								AENL							
								-							
		FAC	TOR (x)*				0.08909897	=			100	0.00 Kaf		
	<i>t</i>			~/				0.0000000	_			4 400	0.0014		
	tue	erza Cortai	nte de	Edifició V					=			1492	32.63 Kgr		
			_			DIST	RIBUCIÓN	DE FUERZA	DIRECCIÓN X	- X					
									124544001435						Cv-V
Story	Load Case/Combo	Location	Р	vx	VY	φ	m	PESO	Wx·φx	(Ψxφx/Σ₩xφx)	Cv	Fn = Vn - Vn+1	Cv	Story	FUERZA LATERAL PARA LA DIRECCIÓN X-X
			kgf	kgf	kgf		Kg (acum)	Kg			kgf-m	kgf-m	0.089099		Kgf
T.TECHO	SD X-X	Bottom	0	16188.92	3022.17	15227.66	94127.58	94127.58	1433342785	0.01	0.1090	16188.92	0.355555	5.00	53060.41
STORY4	SD X-X	Bottom	0	68619.1	14087.4	75845.64	458219.52	458333.01	27783221234	0.22	0.3564	52430.18	0.3563941	4.00	53185.63
STORY3	SD X-X	Bottom	0	110561.06	24168.5	128058.76	822313.36	822540.33	42947396955	0.34	0.2673	41941.96	0.2672969	3.00	39889.42
STORY2	SD X-X	Bottom	0	137319.41	30704.2	158417.66	1186407.2	1186747.65	36028353232	0.29	0.1782	26758.35	0.178198	2.00	26592.95
STORY1	SD X-X	Bottom	0	149232.63	33323.6	168960.64	1550501	1550954.97	16351687230	0.13	0.0891	11913.22	0.089099	1.00	13296.47

		Į		1	M	U. ÉTODO DE		ICIENTES DE D	ESPI AZAMIENTO (EEN	A 356)	L.				Į
	Deben se	r aplicado FACTC	s al m)R (α)*	V nenos do	G1:Distrib álido cuar s distribuo	oución v ndo la m ciones v	ertical d asa par erticale:	le carga pro ticipativa er s de carga l 0.089099	porcional a los v n modo fundame ateral, seleccior =	/alores de Cv ntal β1 ≥ 75% nando un patró	in de ca	ida grupo a c	ontinua	ación: 1000.	00 Kgf
	PES	SO TOTAL	DEL E	DIFICIO					=		-			157921	1.28 Kgf
						חפדנו				v					
						DIST		N DE FUERZ	A DIRECCION 1-						
			Ρ	vx	VY				52670306459.07						α∙Cν
Story	Load Case/Combo	Location				φ	m	PESO	₩х-фх	(₩xφx/Σ₩xφx)	Cv	Fn = Vn - Vn+1	Cv	Story	FUERZA LATERAL PARA LA DIRECCIÓN Y-Y
			tonf	tonf	tonf	kgf	Kg	Kg			kgf-m	kgf-m	0.089		tonf
T.TECHO	S Y-Y	Bottom	0	3139.21	16298.7	12731.32	94127.58	98484.55	1253838321	0.01	0.10901	16298.7	0.109	5.00	1223.49
STORY4	S Y-Y	Bottom	0	15065.27	68732.65	62276.16	458333	383895.13	19020022793	0.15	0.35639	52433.95	0.356	4.00	3999.98
STORY3	S Y-Y	Bottom	0	25245.82	114079.28	107458.4	822540.3	383897.04	17345309002	0.14	0.2673	45346.63	0.267	3.00	3000.00
STORY2	S Y-Y	Bottom	0	31195.9	144235.34	135855.1	1186748	383897.04	10901443627	0.09	0.1782	30156.06	0.178	2.00	2000.00
STORY1	S Y-Y	Bottom	0	33322.53	157921.28	146664.5	1550955	383897.03	4149692717	0.03	0.0891	13685.94	0.089	1.00	1000.00

Grupo 1: b) Distrib. F. proporcional a F.M.F en el eje Y

					N	IÉTODO DE	LOS COEI	FICIENTES DE D	ESPLAZAMIENTO (FE	MA 356)					
	G	1:Distribu	ción v	ertical p	roporciona	al a la fo	rma del	modo fund	amental de vibra	ción en la dire	cción b	ajo considera	ación.		
								-							
	Deben se	r aplicado	os al n	nenos do	os distribu	ciones \	verticale	s de carga	lateral, seleccio	nando un patro	ón de ca	ada grupo a c	continua	ción:	
		FACTO) R (α)*					10809.39	=		-			1000.0	00 Kgf
	PES	SO TOTAL	DEL E	DIFICIO					=		-			157921	.28 Kgf
	1					DIST	RIBUCIÓ	N DE FUERZ	A DIRECCIÓN Y -	Y					
			Ρ	vx	VY				52670306459.07						α.φ
Story	Load Case/Combo	Location				φ	m	PESO	₩х∙фх	(₩xφx/Σ₩xφx)	Cv	Fn = Vn - Vn+1	φ	Story	FUERZA LATERAL PARA LA DIRECCIÓN Y-Y
			tonf	tonf	tonf	kgf	Kg	Kg			kgf-m	kgf-m	10809.4		tonf
T.TECHO	S Y-Y	Bottom	0	3139.21	16298.7	12731.32	94127.58	98484.55	1253838321	0.01	0.10901	16298.7	12731.3	5.00	1177.80
STORY4	S Y-Y	Bottom	0	15065.27	68732.65	62276.16	458333	383895.13	19020022793	0.15	0.35639	52433.95	49544.8	4.00	4583.50
STORY3	S Y-Y	Bottom	0	25245.82	114079.28	107458.4	822540.3	383897.04	17345309002	0.14	0.2673	45346.63	45182.2	3.00	4179.90
STORY2	S Y-Y	Bottom	0	31195.9	144235.34	135855.1	1186748	383897.04	10901443627	0.09	0.1782	30156.06	28396.8	2.00	2627.05
STORY1	S Y-Y	Bottom	0	33322.53	157921.28	146664.5	1550955	383897.03	4149692717	0.03	0.0891	13685.94	10809.4	1.00	1000.00

Figura 109

Grupo 1: c) Distrib. Proporcional a fuerzas de piso en el eje Y

					N	IÉTODO DE	E LOS COE	FICIENTES DE I	DESPLAZAMIENTO (FE	MA 356)					
				G1	:Distribuc	ión verti	cal prop	orcional a	la distribución de	e fuerzas de pi	S0.				
		E	sta di	stribució	n debe se	er utiliza	da cuar	ido el perío	do del modo fun	damental exce	de 1.0 s	segundo			
mbinar resp	uestas modales	de un aná	lisis e	spectral	del edific	io, inclu	yendo s	uficientes r	nodos que sume	en al menos el	90% de	e la masa tota	al del ec	lificio, y u	tilizando el es
		FACTO	DR (α)*					13685.94	=		-			1000.0	00 Kgf
	PE	SO TOTAL	DEL E	DIFICIO					=		-			157921	.28 Kgf
						DIST	RIBUCIO	N DE FUERZ	A DIRECCION Y -	Y			1		
			Р	vx	VY				52670306459.07						α·Fn
Story	Load Case/Combo	Location				φ	m	PESO	₩х∙фх	(₩xφx/Σ₩xφx)	Cv	Fn = Vn - Vn+1	- Vn+1	Story	FUERZA LATERA PARA LA DIRECCIÓN Y-Y
			tonf	tonf	tonf	kgf	Kg	Kg			kgf-m	kgf-m	13685.9		tonf
T.TECHO	S Y-Y	Bottom	0	3139.21	16298.7	12731.32	94127.58	98484.55	1253838321	0.01	0.10901	16298.7	16298.7	5.00	1190.91
STORY4	S Y-Y	Bottom	0	15065.27	68732.65	62276.16	458333	383895.13	19020022793	0.15	0.35639	52433.95	52434	4.00	3831.23
STORY3	S Y-Y	Bottom	0	25245.82	114079.28	107458.4	822540.3	383897.04	17345309002	0.14	0.2673	45346.63	45346.6	3.00	3313.37
STORY2	S Y-Y	Bottom	0	31195.9	144235.34	135855.1	1186748	383897.04	10901443627	0.09	0.1782	30156.06	30156.1	2.00	2203.43
STORY1	S Y-Y	Bottom	0	33322.53	157921.28	146664.5	1550955	383897.03	4149692717	0.03	0.0891	13685.94	13685.9	1.00	1000.00
			[]												

Grupo 2: d) Distrib. de F. proporcional a la masa del eje Y

					N			FICIENTES DE L	DESPI AZAMIENTO (EE	MA 356)					
			G2:D	istribuci	on de fuer	zas late	rales er	n cada nivel	, proporcional a	la masa total o	de cada	nivel.			
								-							
	Deben se	r aplicado	os al n	nenos do	os distribu	ciones	verticale	es de carga	lateral, seleccio	nando un patro	ón de c	ada grupo a c	continua	ación:	
		FACTO	DR (α)*	,				94127.58	=		-			1000.0	00 Kgf
	PES	SO TOTAL	DEL E	DIFICIO					=		=			157921	.28 Kgf
			1			DIST	RIBUCIC	DN DE FUERZ	A DIRECCION Y -	Y			1		
			Р	vx	VY				52670306459.07						α·m
Story	Load Case/Combo	Location				φ	m	PESO	₩х-фх	(Ψxφx/ΣΨxφx)	Cv	Fn = Vn - Vn+1	m	Story	FUERZA LATERA PARA LA DIRECCIÓN Y-Y
			tonf	tonf	tonf	kgf	Kg	Kg			kgf-m	kgf-m	94127.6		tonf
T.TECHO	S Y-Y	Bottom	0	3139.21	16298.7	12731.32	94127.58	98484.55	1253838321	0.01	0.10901	16298.7	94127.6	5.00	1000.00
STORY4	S Y-Y	Bottom	0	15065.27	68732.65	62276.16	458333	383895.13	19020022793	0.15	0.35639	52433.95	364205	4.00	3869.27
STORY3	S Y-Y	Bottom	0	25245.82	114079.28	107458.4	822540.3	383897.04	17345309002	0.14	0.2673	45346.63	364207	3.00	3869.29
STORY2	S Y-Y	Bottom	0	31195.9	144235.34	135855.1	1186748	383897.04	10901443627	0.09	0.1782	30156.06	364207	2.00	3869.29
STORY1	S Y-Y	Bottom	0	33322.53	157921.28	146664.5	1550955	383897.03	4149692717	0.03	0.0891	13685.94	364207	1.00	3869.29

Figura 111

Cargas laterales, entre la masa y forma modal 1 en el eje Y

						MÉ	TODO DEL	ESPECTRO DE	CAPACIDAD (ATC-40)						
Partiendo o	del modelo de ca	álculo de l	a estr	uctura y	tomando ent	en cuer re la ma	nta carg Isa y la	as gravitaci forma moda	ionales,debe apl al 1 (modo funda	licarse un patro mental).	ón de c	argas laterale	es, prop	orcionale	s al producto
								-							
		FACTO	DR (α)*	,				0.0100674	=		=			1000.	00 Kgf
	PE	SO TOTAL	DEL E	DIFICIO					=		=			157921	.28 Kgf
						DIST	RIBUCIĆ	N DE FUERZ	ZA DIRECCIÓN Y -	Y					
			Р	vx	VY				52670306459.07						((w·φ)/(Σw·φ))·V
Story	Load Case/Combo	Location				φ	m	PESO	Wx-φx	(Ψxφx/ΣΨxφx)	Cv	Fn = Vn - Vn+1	((w·φ)) Σw·φ))	Story	FUERZA LATERA PARA LA DIRECCIÓN Y-Y
			tonf	tonf	tonf	kgf	Kg	Kg			kgf-m	kgf-m	0.01007		tonf
T.TECHO	S Y-Y	Bottom	0	3139.21	16298.7	12731.32	94127.58	98484.55	1253838321	0.01	0.10901	16298.7	0.01007	5.00	1589.86
STORY4	S Y-Y	Bottom	0	15065.27	68732.65	62276.16	458333	383895.13	19020022793	0.15	0.35639	52433.95	0.15272	4.00	24117.31
STORY3	S Y-Y	Bottom	0	25245.82	114079.28	107458.4	822540.3	383897.04	17345309002	0.14	0.2673	45346.63	0.13927	3.00	21993.78
STORY2	S Y-Y	Bottom	0	31195.9	144235.34	135855.1	1186748	383897.04	10901443627	0.09	0.1782	30156.06	0.08753	2.00	13822.99
STORY1	S Y-Y	Bottom	0	33322.53	157921.28	146664.5	1550955	383897.03	4149692717	0.03	0.0891	13685.94	0.03332	1.00	5261.79

Patrón de fuerzas laterales en la dirección Y-AENL

								AENL							
								AENL							
								-							
		FACTO) R (α)*					0.089099	=		=			1000.0	00 Kgf
	PES	SO TOTAL	DEL E	DIFICIO					=		-			157921	.28 Kgf
						DIST	PIBLICIÓ			v					
								DETOERZ							
			Ρ	vx	VY				52670306459.07						Cv-V
Story	Load Case/Combo	Location				φ	m	PESO	₩х∙фх	(Ψxφx/Σ₩xφx)	Cv	Fn = Vn - Vn+1	Cv	Story	FUERZA LATERA PARA LA DIRECCIÓN Y-1
			tonf	tonf	tonf	kgf	Kg	Kg		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	kgf-m	kgf-m	0.0891		tonf
T.TECHO	S Y-Y	Bottom	0	3139.21	16298.7	12731.32	94127.58	98484.55	1253838321	0.01	0.10901	16298.7	0.10901	5.00	17215.32
STORY4	S Y-Y	Bottom	0	15065.27	68732.65	62276.16	458333	383895.13	19020022793	0.15	0.35639	52433.95	0.35639	4.00	56282.22
STORY3	S Y-Y	Bottom	0	25245.82	114079.28	107458.4	822540.3	383897.04	17345309002	0.14	0.2673	45346.63	0.2673	3.00	42211.87
STORY2	S Y-Y	Bottom	0	31195.9	144235.34	135855.1	1186748	383897.04	10901443627	0.09	0.1782	30156.06	0.1782	2.00	28141.25
STORY1	S Y-Y	Bottom	0	33322.53	157921.28	146664.5	1550955	383897.03	4149692717	0.03	0.0891	13685.94	0.0891	1.00	14070.62

4.2.24 M. Coef. de desplazamiento (FEMA 356) del C.S. Conchopata

Figura 113

Método el G1 e ingreso de las fuerzas laterales en X y Y

bads				Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
CARGAS LATERAL X	Seismic	~ 0	User Loads 🗸 🗸	Modify Load
LD LL SEX	Dead Live Seismic	1 0 0	User Coefficient	Modify Lateral Load
CARGAS LATERAL X	Seismic	0	User Loads	Delete Load
CARGAS LATERAL Y	Seismic	0	User Loads	

Método el G1 e ingreso de las fuerzas laterales en X

	Lo	ad Set 1 of 1		
Story	Diaphragm	Fx kgf	Fy kgf	Mz kgf-m
T.TECHO	D5	3990.56	0	0
STORY4	D4	3999.98	0	0
STORY3	D3	3000.00	0	0
STORY2	D2	2000.00	0	0
STORY1	D1	1000.00	0	0
SEMISOTANO	D0	0	0	0
1				

Figura 115

Método el G1 e ingreso de las fuerzas laterales en Y

	Los	nd Set 1 of 1		
Story	Diaphragm	Fx kgf	Fy kgf	Mz kgf-m
T.TECHO	D5	0	1223.49	0
STORY4	D4	0	3999.98	0
STORY3	D3	0	3000.00	0
STORY2	D2	0	2000.00	0
STORY1	D1	0	1000.00	0
CENICOTANO			-	
SEMISUTAND	00	0	0	0
SERIO IAVO	DU	0	0	0
1	00	0 Additional Eccer	0 tricty Ratio (al Dusphragma)	0.05

Fuerzas laterales en la estructura en el eje X

Fuerzas laterales en la estructura en el eje Y

ad Cases			Click to:
Load Case Name	Load Case Type	7	Add New Case
SEX	Linear Static		Add Copy of Case
SEY	Linear Static		Modify/Show Case
SDX	Response Spectrum		Delete Case
SDY	Response Spectrum	*	Delete case
CARGA LATERAL X	Linear Static		Show Load Case Tre
CARGA LATERAL Y	Linear Static	*	
CARGA GRAVITACIONAL NL	Nonlinear Static		
PUSHX	Nonlinear Static		ОК
PUSHY	Nonlinear Static		

Caso de Carga Gravitacional No lineales de la estructura

Figura 119

Caso de Carga Gravitacional No lineales de la estructura

Lond Cheo Mamo			CARGA GR		AL NU	D
Load Case Name			CANUACI	AVITACIÓN		Design
Load Case Type			Nonlinear S	tatic	~	Notes
Mass Source			PESO SISM	ICO	~	
Analysis Model			Default			
 Zero Initial Condition Continue from State Nonlinear Case 	s - Start fro at End of N	m Unstressed S Ionlinear Case	itate (Loads at End	of Case AR	E Included)	
oads Applied						0
Load Type		Load N	lame		Scale Factor	Add
Load Vallom		1		1.1		
Load Pattern	L	L		0.25		Delete
Load Pattern	L	L		0.25		Delete
Load Pattern Load Pattern ther Parameters	L	L		0.25		Delete
Load Pattern Load Pattern ther Parameters Modal Load Case		L	MODAL	0.25	~	Delete
Load Pattern Load Pattern ther Parameters Modal Load Case Geometric Nonlinearity C	Dption	L	MODAL None	0.25	× ×	Delete
Load Pattern Load Pattern ther Parameters Modal Load Case Geometric Nonlinearity C Load Application)ption	L I id	MODAL None	0.25	V Modify/Show	Delete
Load Pattern Load Pattern ther Parameters Modal Load Case Geometric Nonlinearity C Load Application Results Saved)ption Full Loa Final St	I I Id ate Only	MODAL None	0.25	V Modify/Show	Delete

 \times

Datos del caso de carga PUSH X

Load C	ase Name			PUSHX			Design
Load C	ase Type			Nonlinear	Static	~	Notes
Mass S	Source			PESO SISMICO ~			
Analysis Model		Default					
nitial Con	ditions						
⊖ Ze	ro Initial Condition:	s - Start fi	om Unstressed	State			
O Co	ntinue from State	at End of	Nonlinear Case	(Loads at En	d of Case A	RE Included)	
•	Nonlinear Case			CARGA G	RAVITACK	DNAL NL V	
.oads Ap	plied						
	Load Type		Load	Name		Scale Factor	0
Load	Load Type ⁹ attern		Load CARGAS LATE	Name RAL X	1	Scale Factor	Add
Load	Load Type ⁹ attem		Load CARGAS LATE	Name RAL X	1	Scale Factor	Add Delete
Load	Load Type Pattern		Load CARGAS LATE	Name RAL X	1	Scale Factor	Add Delete
Load I	Load Type Pattem		Load CARGAS LATE	Name RAL X	1	Scale Factor	Add Delete
Load I	Load Type Pattern		Load CARGAS LATE	Name RAL X	1	Scale Factor	Add Delete
Load I Other Para Modal	Load Type Pattern ameters Load Case		Load CARGAS LATE	Name RAL X MODAL	1	Scale Factor	Add Delete
Load I Dther Para Modal Geome	Load Type Pattern smeters Load Case tric Nonlinearity C	Dption	Load CARGAS LATE	Name RAL X MODAL None	1	Scale Factor	Add Delete
Load I Dther Par Modal Geome Load <i>I</i>	Load Type Pattern smeters Load Case tric Nonlinearity C opplication)ption Displa	Load CARGAS LATE	Name RAL X MODAL None	1	Scale Factor	Add Delete
Load Other Para Modal Geome Load <i>A</i> Result:	Load Type Pattern ameters Load Case tric Nonlinearity C opplication 1 Saved)ption Displa	Load CARGAS LATE cement Control	Name RAL X MODAL None	1	Scale Factor	Add Delete

Figura 121

Datos del caso de carga PUSH Y

Aplicación de control de cargas del AENL dirección X

Load Application Cor	itrol					
O Full Load						
O Displacement	Control					
🔿 Quasi-Static (run as time history)					
Control Displacemen	t					
O Use Conjugate	Displacement					
O Use Monitored	I Displacement					
Load to a Monitor	ed Displacement Magnit	ude of		0.65		m
Monitored Displacem	ient					
O DOF/Joint	U1 ~	T.TECH	0	~	4078	
O Generalized D	isplacement					
Additional Controlled	Displacements					
None				Mod	lify/Show	
110110						
Quasi-static Parame	ters					
Time History Type	5		Nonlinear Direc	t Integration	History	
Output Time Step	Size			1		sec
Mass Proportiona	I Damping			0		1/se
Hilber-Hughes-Ta	ylor Time Integration Par	ameter, Al	pha	0		
Results Saved f	for Nonlinear Sta	J tic Case	3		×	
Results Saved	te Only	O Mu	Itiple States			
Results Saved Final Star	te Only	O Mu	tiple States			
Results Saved Final Star	te Only	O Mu es	Itiple States			
Results Saved Final State For Each Stage Minimum Nun	te Only ; nber of Saved Stat	O Mu	Itiple States			
Results Saved Final State For Each Stage Minimum Nun Maximum Nu	te Only , nber of Saved Stat mber of Saved Sta	• Mu tes ites	10 100			
Results Saved Final State For Each Stage Minimum Nun Maximum Nun Save	te Only hber of Saved Stat mber of Saved Stat positive Displace	• Mu tes ttes ment Inc	10 100 crements Only			

Aplicación de control de cargas del AENL dirección Y

Load Application Cor	itrol		
O Full Load			
O Displacement	Control		
O Quasi-Static (run as time history)		
Control Displacemen	t		
🔿 Use Conjugate	Displacement		
O Use Monitored	Displacement		
Load to a Monitor	ed Displacement Magnitude of	0.65	m
Monitored Displacem	ent		
O DOF/Joint	U2 V T.TECHO	~ 4078	
○ Generalized D	isplacement		
Additional Controlled	Displacements		
None		Modify/Show	
Quasi-static Paramet	ters		
Time History Type	Nonlinear	Direct Integration History	_
Output Time Step	Size	1	sec
Mass Proportiona	I Damping	0	1/sec
Hilber-Hughes-Ta	ylor Time Integration Parameter, Alpha	0	
		1	
	OK Cancel		

Results Saved for Nonlinear Static Case							
Results Saved Orly O Multi	ple States						
For Each Stage Minimum Number of Saved States	10						
Maximum Number of Saved States	100						
Save positive Displacement Increments Only							
ОК Салс	el						

Definiendo la combinación de carga y el envolvente PUSH

ombinations	Click to:
DERIVA X	Add New Combo
ENVOLVENTE ENVOLVENTE PLISH	Add Copy of Combo
PESO SISMICO SXDISENO	Modify/Show Combo
SYDISENO U1=1.4CM+1.7CV U2=1.25(CM+CV)+-SXDISENO	Delete Combo
U3=1.25(CM+CV)+-SYDISENO U4=0.9CM+-SXDISENO U5=0.9CM+-SYDISENO	Add Default Design Combos
	Convert Combos to Nonlinear Cases

Figura 125

Definiendo los datos de combinación de carga ENVOL.PUSH

Load Combination Name	ENVOL	VENTE PUSH	
Combination Type	Envelo	pe	×
Notes		Modify/Show Not	es
Auto Combination	No		
Load Name		Scale Factor	
Load Name		Scale Factor	
Load Name PUSHX		Scale Factor	Add
Load Name PUSHX PUSHY		Scale Factor 1 1	Add Delete
Load Name PUSHX PUSHY		Scale Factor 1 1	Add Delete
Load Name PUSHX PUSHY		Scale Factor 1 1	Add Delete
Load Name USHX		Scale Factor	Add

4.2.25 D. Simplificado Momento Rotación del C.S. Conchopata

Asignación y definición rótulas Plásticas en vigas

Figura 126

	DISPO	DSICIÓN ROTULAS EN VIG	AS-TECHO		DISPOSICIÓN ROTULAS EN VIGAS				
	VI	GA30X60 P EJE1/EJE B-C T.	TECHO			VI	GA30X60 S EJEC/EJE 2-3 T.	TECHO	
LONGITUD DE LA	DIMENSIÓN DE LA Col limna izolijerda	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA
	COLONNA ILGOILINDA	oo commer dencomme	0/	₽		COLONNA NEGOLENDA	ooconnee bencone	0/	0/
6.03	1.50	1.50	17 /3%	/0 82.57%	1 25	0.50	0.50	12 0/9/	/6 87.06%
0.00	1.30 D	ISPOSICIÓN ROTULAS EN	VIGAS	02.3170	4.23	0.00	ISPOSICIÓN ROTULAS EN 1	VIGAS	01.00%
	VI	GA30X60 P E IE1/E IE C-D T	TECHO			VI	GA30X60 S E IED/E IE 1-2 T	TECHO	
LONGITUD DE LA VIGA	DIMENSIÓN DE LA COLUMNA IZQUIERDA	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	%	%	m	m	m	%	%
2.01	1.50	1.50	52.24%	47.76%	2.81	0.50	0.50	19.57%	80.43%
	D	ISPOSICIÓN ROTULAS EN	VIGAS			D	SPOSICIÓN ROTULAS EN	VIGAS	
	VI	GA30X60 P EJE2/EJE B-C T.	TECHO			VI	GA30X60 S EJED/EJE 2-3 T.	TECHO	
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	%	%	m	m	m	%	%
6.01	1.50	1.50	17.47%	82.53%	4.32	0.50	0.50	12.73%	87.27%
	D	ISPOSICIÓN ROTULAS EN	VIGAS			D	ISPOSICIÓN ROTULAS EN	VIGAS	
	VI	GA30X60 P EJE2/EJE C-D T.	TECHO			VI	GA30X60 S EJEA/EJE 7-8 T.	TECHO	
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	%	%	m	m	m	%	%
2.49	1.50	1.50	42.17%	57.83%	4.07	0.50	1.50	13.51%	74.20%
	D	ISPOSICIÓN ROTULAS EN	VIGAS			D	ISPOSICIÓN ROTULAS EN	VIGAS	
	VI	GA30X60 P EJE3/EJE B-C T.	TECHO			VI	GA30X60 S EJEB/EJE 7-8 T.	TECHO	
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	%	%	m	m	m	%	%
6.01	1.50	1.50	17.47%	82.53%	4.07	1.50	0.50	25.80%	86.49%
	D	ISPOSICIÓN ROTULAS EN	VIGAS			DISPOS	ICIÓN ROTULAS EN VIGAS-	PISO TIPICO	
	V	IGA30X60 EJE3/EJE C-D T.1	ECHO			VIC	GA35X25 CH EJE0/EJE B-D S	STORY4	
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	%	%	m	m	m	%	%
3.24	1.50	1.50	32.41%	67.59%	7.83	0.30	0.30	5.75%	94.25%
	D	ISPOSICIÓN ROTULAS EN	VIGAS			DISPOS	ICIÓN ROTULAS EN VIGAS-	PISO TIPICO	
	VI	GA30X60 P EJE7/EJE A-B T.	ТЕСНО		VIGA30X60 P EJE1/EJE A-B STORY4				
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	%	%	m	m	m	%	%
5.96	1.50	0.50	17.62%	90.77%	5.98	1.50	1.50	17.56%	82.44%
	D	ISPOSICIÓN ROTULAS EN	VIGAS		DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO				
	Vi	GA30X60 P EJE8/EJE A-B T.	TECHO			V	GA30X60 P EJE1/EJE B-C S	TORY4	
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	%	%	m	m	m	%	%
5.96	1.50	1.50	17.62%	82.38%	6.03	1.50	1.50	17.41%	82.59%
	D	ISPOSICIÓN ROTULAS EN	VIGAS			DISPOS	ICION ROTULAS EN VIGAS-	PISO TIPICO	
	VI	GA30X60 S EJEB/EJE 1-2 T.	TECHO			VI.	GA30X60 P EJE1/EJE C-D S	TORY4	
LONGITUD DE LA VIGA	DIMENSION DE LA Columna izquierda	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSION DE LA Columna izquierda	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	%	%	m	m	m	%	%
3.34	0.50	0.50	16.47%	83.53%	2.01	1.50	1.50	52.24%	47.76%
	D	ISPOSICION ROTULAS EN	VIGAS			DISPOS	ICION ROTULAS EN VIGAS-	PISO TIPICO	
	VI	GA30X60 S EJEB/EJE 2-3 T.	I ECHO			V	GA30X60 P EJE2/EJE A-B S	IORY4	
VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSION DE LA COLUMNA IZQUIERDA	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	%	%	m	m	m	%	%
4.25	0.50	0.50	12.94%	87.06%	5.96	0.50	1.50	9.23%	82.38%
	D	ISPOSICION ROTULAS EN	VIGAS			DISPOS	ICION ROTULAS EN VIGAS-	PISO TIPICO	
LONGITUD DE LA	VI DIMENSIÓN DE LA COLUMNA IZQUIERDA	GA30X60 S EJEC/EJE 1-2 T. DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA	VI DIMENSIÓN DE LA COLUMNA IZQUIERDA	GA30X60 P EJE2/EJE B-C S DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA
m	m	m	9/	٩/	TIGA		SOLUMINA DENEGRA	0/	9/
2.00	0.50	0.50	18 07%	/0 81.03%	10.6	1.50	1.50	70	75
2.00	0.00	0.00	10.3170	01.0070	0.01	1.00	1.00	17.4770	02.0070

	DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO					DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO				
	VI	GA30X60 P EJE2/EJE C-D S	FORY4			VI	GA30X60 P EJE7/EJE B-C S	TORY4		
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	%ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
2.49	1.50	1.50	42.17%	57.83%	6.01	0.50	1.50	9.15%	82.53%	
	DISPOS	ICIÓN ROTULAS EN VIGAS-	PISO TIPICO			DISPOS	CIÓN ROTULAS EN VIGAS	PISO TIPICO		
	VI	GA30X60 P EJE3/EJE A-B S	FORY4			VI	GA30X60 P EJE7/EJE C-D S	TORY4		
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
5.96	0.50	1.50	9.23%	82.38%	5.67	1.50	0.50	18.52%	90.30%	
DISPOSICION ROTULAS EN VIGAS-PISO TIPICO						DISPOS	ICIÓN ROTULAS EN VIGAS	PISO TIPICO		
	VI	GA30X60 P EJE3/EJE B-C S	FORY4			VI	GA30X60 P EJE8/EJE A-B S	TORY4		
LONGITUD DE LA VIGA	DIMENSION DE LA Columna izquierda	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSION DE LA Columna izquierda	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
6.01	1.50	1.50	17.47%	82.53%	5.96	1.50	1.50	17.62%	82.38%	
	DISPOSI	ICIÓN ROTULAS EN VIGAS-	PISO TIPICO			DISPOSI	ICIÓN ROTULAS EN VIGAS	PISO TIPICO		
	VI	GA30X60 P EJE3/EJE C-D S	FORY4			VI.	GA30X60 P EJE8/EJE B-C S	TORY4	1	
LONGITUD DE LA VIGA	DIMENSION DE LA Columna izquierda	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSION DE LA Columna izquierda	DIMENSION DE LA COLUMNA DERECHA	%ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
3.24	1.50	1.50	32.41%	67.59%	6.01	1.50	1.50	17.47%	82.53%	
	DISPOSI	ICION ROTULAS EN VIGAS-	PISO TIPICO			DISPOS	ICION ROTULAS EN VIGAS	PISO TIPICO		
	VI	GA30X60 P EJE4/EJE A-B S	FORY4			VI	GA30X60 P EJE8/EJE C-D S	TORY4		
LONGITUD DE LA VIGA	DIMENSION DE LA COLUMNA IZQUIERDA	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSION DE LA Columna izquierda	DIMENSION DE LA COLUMNA DERECHA	%ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
5.96	1.50	1.50	17.62%	82.38%	6.39	1.50	1.50	16.43%	83.57%	
	DISPOSI	ICION ROTULAS EN VIGAS-	PISO TIPICO			DISPOS	ICION ROTULAS EN VIGAS	PISO TIPICO		
	VI ,	GA30X60 P EJE4/EJE B-C S	FORY4			Vic.	GA30X60 P EJE9/EJE A-A1 S	STORY4		
LONGITUD DE LA VIGA	DIMENSION DE LA COLUMNA IZQUIERDA	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSION DE LA COLUMNA IZQUIERDA	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
6.01	1.50	1.50	17.47%	82.53%	1.86	0.50	1.50	29.57%	43.55%	
	DISPOSI	ICION ROTULAS EN VIGAS-	PISO TIPICO			DISPOS	CION ROTULAS EN VIGAS	PISO TIPICO		
	VI ,	GA30X60 P EJE4/EJE C-D S	FORY4		VIGA30X60 P EJE9/EJE A1-B STORY4					
LONGITUD DE LA VIGA	DIMENSION DE LA Columna izquierda	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSION DE LA Columna izquierda	DIMENSION DE LA COLUMNA DERECHA	%ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
4.20	1.50	1.50	25.00%	75.00%	4.11	1.50	1.50	25.55%	74.45%	
	DISPOSI	ICION ROTULAS EN VIGAS-	PISO TIPICO			DISPOS	CION ROTULAS EN VIGAS	PISO TIPICO		
LONGITUD DE LA	VI DIMENSIÓN DE LA COLUMNA IZQUIERDA	GA30X60 P EJE5/EJE A-B S DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA COLUMNA IZQUIERDA	GA30X60 P EJE9/EJE B-C1 S DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
5.96	1.50	1.50	17.62%	82.38%	5.52	1.50	1.50	19.02%	80.98%	
	DISPOSI	ICIÓN ROTULAS EN VIGAS-	PISO TIPICO			DISPOS	ICIÓN ROTULAS EN VIGAS	PISO TIPICO		
	VI	GA30X60 P EJE5/EJE B-C S	FORY4			Vic	GA30X60 P EJE9/EJE C1-D S	STORY4		
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
6.01	1.50	1.50	17.47%	82.53%	5.23	1.50	0.50	20.08%	89.48%	
	DISPOS	ICIÓN ROTULAS EN VIGAS-	PISO TIPICO			DISPOS	ICIÓN ROTULAS EN VIGAS	PISO TIPICO		
	VI	GA30X60 P EJE5/EJE C-D S	FORY4			VIG	A35X25 CH EJE3-1/EJE C-D	STORY4		
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
4.78	1.50	1.50	21.97%	78.03%	3.82	0.30	0.30	11.78%	88.22%	
	DISPOSI	ICIÓN ROTULAS EN VIGAS-	PISO TIPICO			DISPOS	ICIÓN ROTULAS EN VIGAS	PISO TIPICO		
	VI	GA30X60 P EJE7/EJE A-B S	FORY4			V	GA30X60 S EJEA/EJE 1-2 S	TORY4		
LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
5.96	1.50	0.50	17.62%	90.77%	3.77	1.50	1.50	27.85%	72.15%	

	DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO					DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO				
	5101 00	GA30Y60 S E IEA/E IE 0.2 C	TOPVI			5151 03	CA20YED & EVENIE IS TO A			
		GAJUAOU S EJEA/EJE 2-3 S	IUK14			VI	GA30X60 S EJEB/EJE 7-8 S	IOR14		
VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSION DE LA COLUMNA IZQUIERDA	DIMENSION DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	m	m	m	%	%	
4.25	1.50	1.50	24.71%	75.29%	4.07	1.50	0.50	25.80%	86.49%	
	DISPOS	ICIÓN ROTULAS EN VIGAS-	PISO TIPICO			DISPOS	CIÓN ROTULAS EN VIGAS-	PISO TIPICO		
	V	GA30X60 S EJEA/EJE 3-4 S	TORY4			V	GA30Y60 S E IEC/E IE 1.2 S	TORYA		
LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA	% POTULA IZOUJEPDA	% POTULA DEPECHA						
VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	%	%	VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
5.45	1.50	0.50	19.27%	89.91%	m	m	m	%	%	
0.10	DISPOS	CIÓN ROTULAS EN VIGAS	PISO TIPICO	00.0176	2.91	0.50	0.50	18.90%	81.10%	
VIGA30X60 S EJEA/EJE 4-5 STORY4						DISPOS	CIÓN ROTULAS EN VIGAS-	PISO TIPICO		
LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA				v	GA30X60 S EJEC/EJE 2-3 S	TORY4		
VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
m	m	m	%	%	VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA			
3.29	0.50	0.50	16.72%	83.28%	m	m	m	%	%	
	DISPOS	ICION ROTULAS EN VIGAS-	PISO TIPICO		4.25	0.50	0.50	12.94%	87.06%	
	V	GA30X60 S EJEA/EJE 5-7 S	TORY4			DISPOS	CIÓN ROTULAS EN VIGAS	PISO TIPICO		
LONGITUD DE LA	DIMENSION DE LA	DIMENSION DE LA	% ROTULA IZQUIERDA	% ROTULA DERECHA		V	GA30X60 S EJEC/EJE 3-4 S	TORY4		
VIGA	GOLUMINA IZQUIERDA	COLUMNA DERECHA		~	LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA			
m	m	m	%	%	VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% RUTULA IZQUIERDA	% RUTULA DERECHA	
5.04	0.50		10.91%	89.09%	m	m	m	%	%	
	DISPUS	CION RUTULAS EN VIGAS			5.45	0.50	0.50	10.09%	89.91%	
	V	GA30X60 S EJEA/EJE 7-8 S	TORY4			DISPOS	CIÓN ROTULAS EN VIGAS-	PISO TIPICO		
LONGITUD DE LA VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA		VI	GA30X60 S EJEC/EJE 4-5 S	TORY4		
m	m	m	%	%	LONGITUD DE LA	DIMENSIÓN DE LA COLUMNA IZQUIERDA	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
4.07	0.50	1.50	13.51%	74.20%	TICA	ODEDININA IEQUIENDA	ODEOININA DEILEONIA	01		
	DISPOS	ICION ROTULAS EN VIGAS-	PISO TIPICO		m	m	m	%	%	
	V	GA30X60 S EJEA/EJE 8-9 S	TORY4		3.29	0.50	0.50	16.72%	83.28%	
LONGITUD DE LA	DIMENSION DE LA	DIMENSION DE LA	% ROTULA IZQUIERDA	% ROTULA DERECHA	-	DISPOS	CION ROTULAS EN VIGAS-	PISO TIPICO		
VIGA	COLUMINA IZQUIERDA	COLUMINA DERECHA				V	GA30X60 S EJEC/EJE 5-7 S	TORY4		
m	m	m	%	%	LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA	% POTULA IZOUJERDA	% POTULA DERECHA	
2.98	1.50	1.50	35.23%	64.77%	VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	AND TO EXTERNOL	ANOTOEX DEMEORAT	
	DISPUS	ICION RUTULAS EN VIGAS	PISUTIPICU		m	m	m	%	%	
	V	GA30X60 S EJEB/EJE 1-2 S	TORY4		5.04	0.50	0.50	10.91%	89.09%	
LONGITUD DE LA	DIMENSION DE LA	DIMENSION DE LA	% ROTULA IZQUIERDA	% ROTULA DERECHA		DISPOS	CIÓN ROTULAS EN VIGAS-	PISO TIPICO		
VIGA	COLUMINA IZQUIERDA	COLUMNA DERECHA		~		V	GA30X60 S EJEC/EJE 7-8 S	TORY4		
m	m	m	76	%	LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA			
3.34	0.50	0.50	16.4/%	83.53%	VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
	DISPUS	CION ROTULAS EN VIGAS			m	m	m	%	%	
		DIMENSIÓN DE : *	IUR14		4.07	0.50	0.50	13.51%	86.49%	
VIGA	COLUMNA IZQUIEPDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	4.01	DIEDOE	CIÓN ROTULAS EN VICAS	PISO TIPICO	00.4070	
	m	m	92	96		03503	CLOSENGTOLIAG EN VIGAG			
4.05	0.50	0.50	12 0.49/	/0 87 000/		VI	GA30X60 S EJED/EJE 1-2 S	IUKY4		
4.20	DISPOS	ICIÓN ROTULAS EN VIGAS	PISO TIPICO	67.00%	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA Columna derecha	% ROTULA IZQUIERDA	% ROTULA DERECHA	
	V	GA30X60 S EJEB/EJE 3-4 S	TORY4			-				
LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA	% POTULA IZOLIJEPDA	N POTULA DEPECTA	m	m	m	%	%	
VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	A NOT OLA IZQUICKDA	ANOTOLA DENECHA	2.81	0.50	0.50	19.57%	80.43%	
m	m	m	%	%		DISPOS	CIÓN ROTULAS EN VIGAS-	PISO TIPICO		
5.45	0.50	0.50	10.09%	89.91%		v	GA30X60 S EJED/EJE 2-3 S	TORY4		
	DISPOS	CIÓN ROTULAS EN VIGAS	PISO TIPICO		LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA			
		GA30X60 S EJEB/EJE 4-5 S	TORY4		VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	m	m	m	%	%	
m	m	m	%	%	4.32	0.50	0.50	12.73%	87.27%	
3.29	0.50	0.50	16.72%	83.28%		DISPOS	CIÓN ROTULAS EN VIGAS-	PISO TIPICO		
			PISO TIPICO			V	G430X60 S E.IED/E.IE 3-4 S	TORYA		
	DISPOS	CION ROTULAS EN VIGAS					CITOCITOR O EDEDIEDE C			
	DISPOS	ICION ROTULAS EN VIGAS GA30X60 S EJEB/EJE 5-7 S	TORY4							
LONGITUD DE LA VIGA	DISPOS V DIMENSIÓN DE LA COLUMNA IZQUIERDA	CION ROTULAS EN VIGAS- GA30X60 S EJEB/EJE 5-7 S DIMENSIÓN DE LA COLUMNA DERECHA	TORY4 % ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
LONGITUD DE LA VIGA m	DISPOS V DIMENSIÓN DE LA COLUMNA IZQUIERDA m	GA30X60 S EJEB/EJE 5-7 S DIMENSIÓN DE LA COLUMNA DERECHA m	TORY4 % ROTULA IZQUIERDA %	% ROTULA DERECHA %	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda m	DIMENSIÓN DE LA COLUMNA DERECHA m	% ROTULA IZQUIERDA	% ROTULA DERECHA %	

UNITED DIAL DESCRIPTION <th colspan="2</th> <th colspan="7"></th> <th></th>											
Classifier VII. Description VII. </td <td></td> <td>V</td> <td>IG A 30 Y 60 S E IED/E IE 4-5 S</td> <td>TOPYA</td> <td></td> <td></td> <td>Vice</td> <td>20VED DE IE7/E IE C D SEM</td> <td></td> <td></td>		V	IG A 30 Y 60 S E IED/E IE 4-5 S	TOPYA			Vice	20VED DE IE7/E IE C D SEM			
m m	LONGITUD DE LA VIGA	DIMENSIÓN DE LA COLUMNA IZQUIERDA	DIMENSIÓN DE LA COLUMNA DERECHA	%ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA	DIMENSIÓN DE LA	DIMENSIÓN DE LA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
33 6.90 6.90 16.0° 8.93 5.97 9.93 <	m	m	m	%	%	m	m	m	%	%	
Image: Control to a bandle of process of the control of process of the control of the co	3.34	0.50	0.50	16.47%	83.53%	5.67	1.50	0.25	18.52%	92.50%	
VALABLE S FLORE * TOTA* VALABLE S FLORE**		DISPOS	ICIÓN ROTULAS EN VIGAS	PISO TIPICO			DISPOSI	CIÓN ROTULAS EN VIGAS-S	SEMISOTANO		
CHARDING LL Desined/or LL Sector LL DESING NoTULA LDUEEDA NOTULA LD		v	GA30X60 S EJED/EJE 5-7 S	TORY4			VIGA	30X60 P EJE8/EJE A-B SEM	ISOTANO		
NUMBER NOT ALL RESIDES NATURA RESIDES <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>											
m m	VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	%ROTULA IZQUIERDA	% ROTULA DERECHA	VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
1.50 <	m	m	m	%	%	m	m	m	%	%	
OBJECT OF STORE OBJECT OF STORE UNAMES DE LAC DESCRIPTION UNAMES DE LAC DESCRIPTION UNAMES DE LAC DESCRIPTION UNAMES DE LA DESCRIPTION DE LA DESCRIPTION UNAMES DE LA DESCRIPTION DE LA DESCRIPTI	5.18	0.50	1.50	10.62%	79.73%	5.96	0.25	1.50	7.13%	82.38%	
VIRUARIS & ELEMENT PE VIRUE PE VIRUE DE VIRUE DE LEMENTARIO VIRUERISION ELLA OCLUMINA COURIENA DE VIRUERISION ELLA OCLUMINA COURIENA DE VIRUERISION ELLA OCLUMINA COURIENA DE VIRUERISION ELLA DE VIRUERISI		DISPOS	ICION ROTULAS EN VIGAS	PISO TIPICO			DISPOSI	CIÓN ROTULAS EN VIGAS-S	SEMISOTANO		
LINKEND DEL Å VALANDA ROLLEDA VALANDA ROLLEDA	VIGA30X60 S EJED/EJE 7-8 STORY4						VIGA	30X60 P EJE8/EJE B-C SEM	ISOTANO		
m n	LONGITUD DE LA VIGA	DIMENSIÓN DE LA Columna izquierda	DIMENSIÓN DE LA COLUMNA DERECHA	%ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA COLUMNA IZQUIERDA	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
4.13 1.90 1.90 2.55% 7.59% 0.90 1.90 <	m	m	m	%	%	m	m	m	%	%	
BISHONE ON BUTULA BLY VIGAS-REGO TIPEOD DIBBODIO	4.13	1.50	1.50	25.42%	74.58%	6.01	1.50	1.50	17.47%	82.53%	
VIEXION 65 ELEMEE 16 STORY VIEXION 65 ELEMEE 16 STORY UNITUD 61.L DEBISIÓN 62 LA STOTLA DEBISÓN 62 LA STO		DISPOS	ICIÓN ROTULAS EN VIGAS	PISO TIPICO			DISPOSI	CIÓN ROTULAS EN VIGAS-S	SEMISOTANO		
LONETTID OF LA VIGA DIMENSIÓN OF LA COLUMNA LOQUEDIA DIMENSIÓN OF LA COLUMNA LOQUEDIA Sentital A DECUESIA Sentital DECUESIA Sentital		v	GA30X60 S E.IED/E.IE 8-9 S	TORY4			VIGA	30X60 P EJE8/EJE C-D SEM	ISOTANO		
m m	LONGITUD DE LA VIGA	DIMENSIÓN DE LA COLUMNA IZQUIERDA	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DIMENSIÓN DE LA COLUMNA IZQUIERDA	DIMENSIÓN DE LA COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
150 150 150 150 23 530% 4476% USPORCION ROTULAS EN VIGAS-PRIST PROD USPORCION ROTULAS EN VIGAS-PRIST PROD UNAXXX CH LESLING & STORY LONGTUD DE LA DIMENSIÓN DE LA DIMENSIÓN	m	m	m	%	%	m	m	m	%	%	
Disposicion structures en visuals en visual	1.90	1.50	1.50	55.26%	44.74%	6.39	1.50	0.25	16.43%	93.35%	
URASSES OF LEALTELE 45 STORYL URASSES OF LEALTEL 45 STORYL LONGTUD DE LA WICA DIMENSIÓN RE LA COLUMNA DESECIÓN ROTULA DE LA DIMENSIÓN RE LA COLUMNA COLUMNA DESECIÓN ROTULAS EN INGAS-RESO TRACIONA DESPOSICIÓN ROTULAS EN INGAS-RESO TRACIONA DESPOSICIÓN ROTULAS EN INGAS-RESO TRACIONA VICASZES OF LEALTELE 45 STORYL MICHINO DE LA DIMENSIÓN RE LA COLUMNA COLUMNA DESECIÓN ROTULAS EN INGAS-RESO TRACIONA VICASZES OF LEALTELE 45 STORYL MICHINO DE LA DIMENSIÓN RE LA COLUMNA COLUMNA DESECIÓN ROTULAS EN INGAS-RESO TRACIONA VICASZES OF LEALTELE 45 STORYL MICHINO DE LA DIMENSIÓN RE LA COLUMNA COLUMNA DESECIÓN ROTULA DESPOSICIÓN ROTULAS EN INGAS-RESO TRACIONA VICASZES DE LEALTEL 45 STORYL MICHINO DE LA DIMENSIÓN RE LA COLUMNA COLUERDA COLUMNA DESECIÓN ROTULA DESPOSICIÓN ROTULAS EN INGAS-RESO TRACIONA VICASZES DE LEALTEL 45 STORYL VICASZES		DISPOS	ICIÓN ROTULAS EN VIGAS	PISO TIPICO			DISPOSI	CIÓN ROTULAS EN VIGAS-S	SEMISOTANO		
LONGTUD DE LA WIGA DIMESSIÓN E LA CULUMA DERECIA VIGA % ROTULA LOUIERDA CULUMA DERECIA X ROTULA DERECI		VIC		NVR072			Vici	20VED S E IED/E IE 6 7 SEM			
LONGTUD EL LA WICA CONTUD EL A COLUMA LOBERCIA INSTRUCTOR EL A INSTRUCTOR EL A INSTRUC			DIMENSIÓN DE LA	510K14			VIGA	JUXOU S EJED/EJE 0-7 JEM	ISUTANU		
m m	VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	%ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	COLUMNA IZQUIERDA	COLUMNA DERECHA	% ROTULA IZQUIERDA	% ROTULA DERECHA	
3.29 0.30 0.31 13.8% 68.2% 4.60 0.25 1.50 9.2% 77.1% UIGASSUE ON ELLA DIMENSIÓN DE LA UNASSUE ON ELLA WIGA DIMENSIÓN DE LA DIMENSIÓN DE LA COLUMINA ZOURDA COLUMINA ZOURDA MARSIÓN DE LA COLUMINA ZOURDA DIMENSIÓN DE LA COLUMINA ZOURDA MARSIÓN DE LA COLUMINA ZOURDA MARSIÓN DE LA DIMENSIÓN DE LA COLUMINA ZOURDA MARSIÓN DE LA COLUMINA ZOURDA MARSIÓN DE LA DIMENSIÓN DE LA COLUMINA ZOURDA MARSIÓN DE LA COLUMINA ZOURDA MARSIÓN DE LA DIMENSIÓN DE LA	m	m	m	%	%	m	m	m	%	%	
DBPOSICIÓN ROTULAS EN VIGAS 2981077ANO VIGASXES CA FLERALES E AS STORYA COLUMAN EXERCIA MARTILA EXEVIGAS SERVISCE CA STOLAL EQUIERDA NOTILA E DURINSION DE LA OMENSION DE LA OMENSION DE LA OMENSION DE LA DISPOSICIÓN ROTULAS EN VIGAS SERVISCE TANO VIGASXES CA FLERALES E 14 STORYA VIGASXES CA FLERALES 14 STORYA	3.29	0.30	0.30	13.68%	86.32%	4.60	0.25	1.50	9.24%	77 17%	
VIGASS2G CH LEAVIELE 49 STORY VIGASS2G CH LEAVIELE 49 STORY LONGTUD DE LA OULMINA LIZULERDA VIGASS2G CH LEAVIELE 49 STORY LONGTUD DE LA OULMINA LIZULERDA VIGASS2G CH LECZIE STORY VIGASS2G CH LECZIE ST STORY VIGASS2G CH LECZIE ST STORY VIGASS2G CH LECZIE ST STORY UGASS2G CH LECZIE ST STORY VIGASS2G ST LECZIE ST STORY VIGASS	DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO								0.2170	11.1176	
LONGTUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA MANTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA WIGA % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA WIGA % ROTULA DERECHA COLUMNA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA WIGA % ROTULA DERECHA IZZON M M M % ROTULA IZQUIERDA % ROTULA DERECHA WIGA % ROTULA DERECHA IZZON M M M % ROTULA DERECHA WIGA M ROTULA IZQUIERDA % ROTULA DERECHA WIGA M ROTULA IZQUIERDA % ROTULA DERECHA WIGA M ROTULA IZQUIERDA % ROTULA DERECHA WIGA M ROTULA DERECHA IZZON % ROTULA DERECHA WIGA M ROTULA IZQUIERDA % ROTULA DERECHA WIGA M ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA WIGA M ROTULA DERECHA VIGA M ROTULA DERECHA WIGA M ROTULA DERECHA WIGA M ROTULA DERECHA WIGA M ROTULA IZQUIERDA M ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA WIGA M ROTULA IZQUIERDA % ROTULA IZQUIERDA		DISPOS	ICIÓN ROTULAS EN VIGAS	PISO TIPICO			DISPOSI	CIÓN ROTULAS EN VIGAS-S	SEMISOTANO		
m m		DISPOS	ICIÓN ROTULAS EN VIGAS 6A35X25 CH EJEA1/EJE 8-9	PISO TIPICO STORY4			DISPOSI	CIÓN ROTULAS EN VIGAS-S 30X60 S EJEB/EJE 7-8 SEM	SEMISOTANO ISOTANO		
2.87 0.30 0.50 15.68% 80.84% 4.60 1.50 0.50 22.83% 88.04% DISPOSICIÓN ROTULAS EN VIGAS-PISO TIVO VIGASXES CHE LECZELE 51 45 TORY LONGITUD DE LA COLUMNA IZQUEEDA COLUMA DERECHA COLUMNA DERECHA % ROTULA IZQUEEDA COLUMNA DERECHA % ROTULA DERECHA COLUMNA DERECHA % ROTULA DERECHA © MERECHA % ROTULA DERECHA <th colspan<="" td=""><td>LONGITUD DE LA VIGA</td><td>DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA</td><td>ICIÓN ROTULAS EN VIGAS BA35X25 CH EJEA1/EJE 8-9 : DIMENSIÓN DE LA COLUMNA DERECHA</td><td>PISO TIPICO STORY4 % ROTULA IZQUIERDA</td><td>% ROTULA DERECHA</td><td>LONGITUD DE LA VIGA</td><td>DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA</td><td>CIÓN ROTULAS EN VIGAS- 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA</td><td>SEMISOTANO ISOTANO % ROTULA IZQUIERDA</td><td>% ROTULA DERECHA</td></th>	<td>LONGITUD DE LA VIGA</td> <td>DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA</td> <td>ICIÓN ROTULAS EN VIGAS BA35X25 CH EJEA1/EJE 8-9 : DIMENSIÓN DE LA COLUMNA DERECHA</td> <td>PISO TIPICO STORY4 % ROTULA IZQUIERDA</td> <td>% ROTULA DERECHA</td> <td>LONGITUD DE LA VIGA</td> <td>DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA</td> <td>CIÓN ROTULAS EN VIGAS- 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA</td> <td>SEMISOTANO ISOTANO % ROTULA IZQUIERDA</td> <td>% ROTULA DERECHA</td>	LONGITUD DE LA VIGA	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA	ICIÓN ROTULAS EN VIGAS BA35X25 CH EJEA1/EJE 8-9 : DIMENSIÓN DE LA COLUMNA DERECHA	PISO TIPICO STORY4 % ROTULA IZQUIERDA	% ROTULA DERECHA	LONGITUD DE LA VIGA	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA	CIÓN ROTULAS EN VIGAS- 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA	SEMISOTANO ISOTANO % ROTULA IZQUIERDA	% ROTULA DERECHA
DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO UCMORTUD DE LA VIGA DIMENSIÓN DE LA COLUMNA LOQUERDA DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO UCMORTUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUERDA SROTULA IZQUERDA SUBSOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGASORÓS E LECCELE 5 Y SEMISOTANO UCMORTUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUERDA SROTULA IZQUERDA SUBSOSICIÓN ROTULAS EN VIGAS-SEMISOTANO SROTULA DERECHA VIGA SROTULA DERECHA SUBSOSICIÓN ROTULAS EN VIGAS-SEMISOTANO UCMORTUD DE LA VIGAJORIO P ELFICIE E 4 STORY4 DIMENSIÓN DE LA VIGAJORIO S ELECUELE 44 STORY4 DIMENSIÓN DE LA VIGAJORIO S ELECUELE 74 SEMISOTANO UCMORTUD DE LA VIGAJORIO P ELA VIGAJORIO P EL	LONGITUD DE LA VIGA m	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m	ICIÓN ROTULAS EN VIGAS- 3A35X25 CH EJEA1/EJE 8-9 : DIMENSIÓN DE LA COLUMNA DERECHA m	PISO TIPICO STORY4 %ROTULA IZQUIERDA %	% ROTULA DERECHA %	LONGITUD DE LA VIGA m	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA m	CIÓN ROTULAS EN VIGAS-S 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA m	SEMISOTANO ISOTANO % ROTULA IZQUIERDA %	% ROTULA DERECHA	
VIGA33X25 CH EJEC2/EJE 31-4 STORY4 VIGA33X25 CH EJEC2/EJE 31-4 STORY4 VIGA33X25 CH EJEC2/EJE 57 SEMISOTANO LONGTUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA MOTULA IZQUIERDA % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA M ROTULA DERECHA VIGA M ROTULA SE MIGAS-PISO TIPICO DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO VIGA30X00 S EJEC/LE 7.8 SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA MROTULA IZQUIERDA NOTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA VIGA COLUMNA IZQUIERDA % ROTULA DERECHA VIGA COLUMNA IZQUIERDA % ROTULA DERECHA VIGA COLUMNA IZQUIERDA % ROTULA DERECHA VIGA30X00 P EJEC/LE 7.8 SEMISOTANO M m m m % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA VIGA COLUMNA IZQUIERDA % ROTULA DERECHA VIGA COLUMNA IZQUIERDA % ROTULA DERECHA WIGA COL	LONGITUD DE LA VIGA m 2.87	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30	ICIÓN ROTULAS EN VIGAS- 3A35X25 CH EJEA1/EJE 8-9 : DIMENSIÓN DE LA COLUMNA DERECHA m 0.50	PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68%	% ROTULA DERECHA % 80.84%	LONGITUD DE LA VIGA m 4.60	DISPOSI VIGA DIMENSIÓN DE LA COLUMINA IZQUIERDA m 1.50	CIÓN ROTULAS EN VIGAS- 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50	ISOTANO % ROTULA IZQUIERDA % 22.83%	% ROTULA DERECHA % 88.04%	
LONGTUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA MOTULA IZQUIERDA % ROTULA DERECHA m m m m m m m m % % DISPOSICIÓN ROTULAS EN VIGAS-PENSIOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO USADXXX S ELEC'LEL E & STORYA VIGADXXX S ELEC'LEL E & STORYA LONGITUD DE LA INMENSIÓN DE LA DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO SROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA m m m m m m % ROTULA IZQUIERDA % ROTULA DERECHA VIGADXG0P E LE/FILE & STORYA VIGADXG0P E LE/FILE & STORYA DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO UNGRUID DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA M m m m	LONGITUD DE LA VIGA m 2.87	DISPOS VIC DIMENSIÓN DE LA COLUMINA IZQUIERDA m 0.30 DISPOS	ICIÓN ROTULAS EN VIGAS- SA35X25 CH EJEA1/EJE 8-9 : DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 ICIÓN ROTULAS EN VIGAS-	PISO TIPICO STORY4 %ROTULA IZQUIERDA % 15.68% PISO TIPICO	% ROTULA DERECHA % 80.84%	LONGITUD DE LA VIGA m 4.60	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA m 1.50 DISPOSI	CIÓN ROTULAS EN VIGAS- 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS-	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO	% ROTULA DERECHA % 88.04%	
m m	LONGITUD DE LA VIGA m 2.87	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOS VIG	ICIÓN ROTULAS EN VIGAS- SA35X25 CH EJEA1/EJE 8-9 : DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 ICIÓN ROTULAS EN VIGAS- A35X25 CH EJEC2/EJE 31-4	PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4	% ROTULA DERECHA % 80.84%	LONGITUD DE LA VIGA m 4.60	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA m 1.50 DISPOSI VIGA	CIÓN ROTULAS EN VIGAS-S 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS-S 30X60 S EJEC/EJE 6-7 SEM	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO ISOTANO	% ROTULA DERECHA % 88.04%	
215 0.35 0.30 22.09% 78.07% DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO VIGAJOXIO S EL CUELE & PA SENISOT TANO VIGAJOXIO E LA COLUMNA IZQUIERDA DISPOSICIÓN ROTULAS EN VIGAS-PISO TIPICO VIGAJOXIO E LA COLUMNA IZQUIERDA DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGAJOXIO E LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA NOTULA IZQUIERDA % ROTULA IZQUIERDA MIGAJOXIO P ELA VIGAJOXIO P ELEFIELE AS SEMISOTANO VIGAJOXIO P ELA DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGAJOXIO P ELA VIGAJOXIO P ELEFIELE AS SEMISOTANO VIGAJOXIO P ELA VIGAJOXIO P ELEFIELE AS SEMISOTANO VIGAJOXIO P ELA VIGAJOXIO P ELEFIELE AS SEMISOTANO	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA	DISPOS VIIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA	CIÓN ROTULAS EN VIGAS- SA35X25 CH EJEA/I/EJE 8-9 : DIMENSIÓN DE LA COLUMNA DERECHA 0.50 CIÓN ROTULAS EN VIGAS- A35X25 CH EJEC2/EJE 31-4 DIMENSIÓN DE LA COLUMNA DERECHA	PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA	% ROTULA DERECHA % 80.84% % ROTULA DERECHA	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 1.50 DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA	20N ROTULAS EN VIGAS-3 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 21ÓN ROTULAS EN VIGAS-3 30X60 S EJEC/EJE 6-7 SEM DIMENSIÓN DE LA COLUMNA DERECHA	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO ISOTANO % ROTULA IZQUIERDA	% ROTULA DERECHA % 88.04% % ROTULA DERECHA	
Disposición ROTULAS EN VIGAS-FEISIOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGADIXAN EL LA COLUMA DELLA DERESAN VIGADIXAN EL LA COLUMA DELLA DERESAN VIGADIXAN EL LA COLUMA DERECHA VIGADIXAN EL LA COLUMA DERECHA VIGADIXAN EL LA COLUMA DERECHA VIGADIXAN DE LA COLUMA DERECHA VIGADIXANO VIGADIXAN DE LA COLUMA DERECHA % NOTULA DERECHA VIGADIXANO VIGADIXAN DE CLA COLUMA DERECHA VIGADIXANO VIGADIXANO VIGADIXAN DE CLA COLUMA DERECHA % NOTULA DERECHA VIGADIXANO </td <td>LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m</td> <td>DISPOS VIC DIMENSIÓN DE LA COLLIMINA IZQUIERDA M 0.30 DISPOS VIG DIMENSIÓN DE LA COLLIMINA IZQUIERDA M</td> <td>ICIÓN ROTULAS EN VIGAS ASX25 CH EJEA/I/EJE 89 DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 ICIÓN ROTULAS EN VIGAS ASX25 CH EJEC2/EJE 31-4 DIMENSIÓN DE LA COLUMNA DERECHA m</td> <td>PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA %</td> <td>% ROTULA DERECHA % 80.84% % ROTULA DERECHA %</td> <td>LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m</td> <td>DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M</td> <td>200 ROTULAS EN VIGAS- 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 210N ROTULAS EN VIGAS- 30X60 S EJEC/EJE 6-7 SEM DIMENSIÓN DE LA COLUMA DERECHA m</td> <td>SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.33% SEMISOTANO ISOTANO % ROTULA IZQUIERDA %</td> <td>% ROTULA DERECHA % 88.04% % ROTULA DERECHA %</td>	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m	DISPOS VIC DIMENSIÓN DE LA COLLIMINA IZQUIERDA M 0.30 DISPOS VIG DIMENSIÓN DE LA COLLIMINA IZQUIERDA M	ICIÓN ROTULAS EN VIGAS ASX25 CH EJEA/I/EJE 89 DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 ICIÓN ROTULAS EN VIGAS ASX25 CH EJEC2/EJE 31-4 DIMENSIÓN DE LA COLUMNA DERECHA m	PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA %	% ROTULA DERECHA % 80.84% % ROTULA DERECHA %	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M	200 ROTULAS EN VIGAS- 30X60 S EJEB/EJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 210N ROTULAS EN VIGAS- 30X60 S EJEC/EJE 6-7 SEM DIMENSIÓN DE LA COLUMA DERECHA m	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.33% SEMISOTANO ISOTANO % ROTULA IZQUIERDA %	% ROTULA DERECHA % 88.04% % ROTULA DERECHA %	
VIGA30X40 S EJECUEJE 84 STORY4 VIGA30X40 S EJECUEJE 74 SEMISOTANO LONGITUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA DERECHA VIGA30X40 S EJECUEJE 74 SEMISOTANO m m m m % % 1218 0.30 0.50 20.64% 74.77% 4.60 0.50 0.50 11.96% 88.04% VIGA30X60 P EJA COLUMNA IZQUIERDA VIGA30X60 P EJA COLUMNA IZQUIERDA VIGA30X60 P EJA COLUMNA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA M m m m M % % 218 0.30 0.50 20.64% 74.77% 4.60 0.50 0.50 11.96% 88.04% VIGA30X60 P EJA COLUMNA IZQUIERDA WIGA30X60 P EJA COLUMNA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA M m m m M % % VIGA30X60 P EJA VIGA DIMENSIÓN DE LA COLUMA IZQUIERDA DIME	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15	DISPOS VIC DIMENSIÓN DE LA COLUMINA IZQUIERDA M 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMINA IZQUIERDA M 0.35	ICIÓN ROTULAS EN VIGAS ASSX25 CH EJEAT/EJE 8-9 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 ICIÓN ROTULAS EN VIGAS SASX25 CH EJEC2/EJE 31-4 DIMENSIÓN DE LA COLUMINA DERECHA m 0.30	PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % 22.09%	% ROTULA DERECHA % 80.84% % ROTULA DERECHA % 79.07%	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60	DISPOSI VIG# DIMENSIÓN DE LA COLLIMA IZQUIERDA m DISPOSI VIG# DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.25	IÓN ROTULAS EN VIGAS- 30X60 S EJEREJE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 IÓN ROTULAS EN VIGAS- SUÓN ROTULAS EN VIGAS- DIMENSIÓN DE LA COLUMNA DERECHA m 0.50	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO % ROTULA IZQUIERDA % 9.2.42%	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04%	
UNSTRUCT DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUERDA UNENSIÓN DE LA COLUMNA IZQUERDA M ROTULA IZQUERDA % ROTULA DERECHA m m m m m m m m m m m % ROTULA IZQUERDA % ROTULA DERECHA 218 0.30 0.50 20.64% 74.77% 4.60 0.50 0.51 % ROTULA DERECHA VIGASIX60 P ELET/ELE AS SEMISOTANO VIGASIX60 P ELET/ELE AS SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGASIX52 CH ELEVICLE 8-9 SEMISOTANO LONGITUD DE LA MIM M DIMENSIÓN DE LA COLUMNA IZQUERDA % ROTULA IZQUERDA % ROTULA DERECHA N ROTULA DERECHA	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.35 DISPOS	ICIÓN ROTULAS EN VIGAS ASXX: SO HE LEAVIDE 8-9 DIMENSIÓN DE LA OLUMINA DERECHA M 0.50 ICIÓN ROTULAS EN VIGAS ASXX: SO HE LECZEJE 31-4 DIMENSIÓN DE LA COLUMINA DERECHA M 0.30 ICIÓN ROTULAS EN VIGAS	PSO TIPICO STORY4 % ROTULA IZQUIERDA % 115.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % 22.09% PISO TIPICO	% ROTULA DERECHA % 80.84% % ROTULA DERECHA % 73.07%	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60	DISPOSI VIG# DIMENSIÓN DE LA COLLIMNA IZQUIERDA m 1.50 DISPOSI VIG# DIMENSIÓN DE LA COLLIMNA IZQUIERDA m 0.25 DISPOSI	CONTROTULAS EN VIGAS- SOX60 S ELEBLE 7-4 SEM DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 200 ROTULAS EN VIGAS- SOX60 S ELECCE 6-7 SEM DIMENSIÓN DE LA COLUMINA DERECHA M .50 200 ROTULAS EN VIGAS-	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 9.24% SEMISOTANO	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% 88.04%	
m m % % m m m % % 2.18 0.30 0.50 20.64% 74.77% 460 0.50 0.50 11.85% 88.04% 2.18 0.30 0.50 20.64% 74.77% 460 0.50 0.50 11.85% 88.04% VIGA30K00 P ELF/ELE AB SEMISOTANO COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA % ROTULA IZQUIERDA % ROTULA DERECHA	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15	DISPOS VIC DIMENSIÓN DE LA COLLIMINA IZQUIERDA m 0.30 DISPOS VIG DIMENSIÓN DE LA COLLIMINA IZQUIERDA m 0.35 DISPOS VIG	ICIÓN ROTULAS EN VIGAS BASX28 CH EJEAVIE JE SA DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS ASX25 CH EJEC2/EJE 31-4 DIMENSIÓN DE LA COLUMNA DERECHA m 0.30 CIÓN ROTULAS EN VIGAS	PSO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% 15.68% STORY4 % ROTULA IZQUIERDA % 22.09% PISO TIPICO TOPY4	% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 70.07%	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.25 DISPOSI	200 ROTULAS EN VIGAS- 2000 S ELEPLE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 2000 S ELECELE 6-7 SEM 0.50 2000 S ELECELE 7-7 2000 S EL	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.33% SENISOTANO ISOTANO % ROTULA IZQUIERDA % 9.24% SEMISOTANO	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04%	
2.18 0.30 0.50 20.64% 74.77% 4.60 0.50 0.50 11.96% 88.04% DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGAJ0K80 P EJE/TELE A B SEMISOTANO VIGAJ0K80 P EJE/TELE A SEMISOTANO VIGAJ0K80 P EJE/TELE A SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGAJ0K80 P EJE/TELE & SEMISOTANO USAJ0K80 P E	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA LONGITUD DE LA VIGA	DISPOS VIC DIMENSIÓN DE LA COLLIMINA IZQUIERDA M 0.30 DIMENSIÓN DE LA COLLIMINA IZQUIERDA M 0.35 DISPOS VIC DIMENSIÓN DE LA COLLIMINA IZQUIERDA	ICION ROTULAS EN VIGAS ASSX28 CH ELEVILEE 49 DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 ICION ROTULAS EN VIGAS ASSX25 CH ELEC2/ELE 51-4 DIMENSIÓN DE LA COLUMINA DERECHA M 0.30 ICION ROTULAS EN VIGAS GADIXOS E LEC/IELE 49 DIMENSIÓN DE LA COLUMINA DERECHA	PSO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA	% ROTULA DERECHA % 80.54% % ROTULA DERECHA % ROTULA DERECHA	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA LONGITUD DE LA VIGA	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 1.50 DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA 0.25 DISPOSI VIGA DISPOSI VIGA	20N ROTULAS EN VIGAS: 30X80 S LEBELE 7 A SEM DIMENSIÓN DE LA 00 CULUMA DERECHA 00 CULUMA DERECHA 00 ROTULAS EN VIGAS: 30X80 S ELECELE 6 A SEM DIMENSIÓN DE LA COLUMNA DERECHA 0.50 2000 ROTULAS EN VIGAS: 30X80 S ELECELE 7 A SEM	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.33% SEMISOTANO SOTANO % ROTULA IZQUIERDA % SEDISOTANO ISOTANO % ROTULA IZQUIERDA	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % ROTULA DERECHA	
DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO LONGTUD DE LA VIGA DIMENSIÓN DE LA COLUMNA DERECHA DIMENSIÓN DE LA MIENSIÓN DE LA COLUMNA DERECHA DIMENSIÓN DE LA MIENSIÓN DE LA COLUMNA DERECHA DIMENSIÓN DE LA MIENSIÓN ROTULAS EN VIGAS-SEMISOTANO VIGADOR PERCINA % ROTULA IZQUIERDA VIGADOR PERCINA % ROTULA IZQUIERDA MIENSIÓN DE LA VIGA DIMENSIÓN ROTULAS EN VIGAS-SEMISOTANO M m m m m % ROTULA IZQUIERDA % ROTULA DERECHA VIGADURO PERCIFICA 0.50 7.15% 90.77% 3.24 0.30 0.25 13.89% 86.88% VIGADURO PERCIFICIE AS SEMISOTANO VIGADURO PERCIFICIE AS SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGADURO PERCIFICIE AS SEMISOTANO VIGADURO PERCIFICIE AS SEMISOTANO VIGADURO PERCIFICIE AS SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGADURO PERCIFICIE AS SEMISTANO VIGADURO PERCIFICIE AS SEMISOTANO VIGADURO PERCIFICIE AS SEMISOTANO VIGADURO PERCIFICIE AS SEMISOTANO UNANTIDO DE LA VIGA COLUMNA DERECHA % ROTULA DERECHA % ROTULA DERECHA VIGADURO PERCIFICIE AS SEMISOTANO VIGADURO PERCIFICIE AS SEMISTANO VIGADURO PERCIFICIE AS SEM	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA m	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m DISPOS DIMENSIÓN DE LA COLUMNA IZQUIERDA VI DIMENSIÓN DE LA COLUMNA IZQUIERDA M	ICION ROTULAS EN VIGAS bassiz CH ELEATIELE BA DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 ICIÓN ROTULAS EN VIGAS ASXIZS CH ELEOZELE 314 DIMENSIÓN DE LA 0.30 ICIÓN ROTULAS EN VIGAS BAJOXO S ELECTIELE 8-9 S DIMENSIÓN DE LA COLUMNA DERECHA m	PISO TIPICO STORY4 % ROTULA IZQUIERDA % STORY4 % ROTULA IZQUIERDA % ROTULA IZQUIERDA ROTULA IZQUIERDA TORY4 % ROTULA IZQUIERDA %	% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 73.07% % ROTULA DERECHA % 20.07%	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA LONGITUD DE LA VIGA m	DISPOSI VIG# DIMENSIÓN DE LA COLUMNA IZOUREDA m 1.50 DISPOSI VIG# DIMENSIÓN DE LA COLUMNA IZOUREDA M DIMENSIÓN DE LA COLUMNA IZOUREDA M M DIMENSIÓN DE LA COLUMNA IZOUREDA	DÓN ROTULAS EN VIGAS: 30X60 S EJEBUET 74 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 150 200N ROTULAS EN VIGAS: 30X60 S EJECOLE 75 SEM DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO % ROTULA IZQUIERDA % 9.24% SEMISOTANO ISOTANO ISOTANO % ROTULA IZQUIERDA %	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA %	
VIGA30X60 P EJET/EJE & B SEMISOTANO LONGTUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA VIGA3XZS CH EJEA/EJE & 9 SEMISOTANO m m m m m m m M % ROTULA IZQUIERDA % ROTULA DERECHA % ROTULA DE	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA M LONGITUD DE LA VIGA m 2.18	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.30	ICIÓN ROTULAS EN VIGAS BASSZA CH EJEA/UEJE BA DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS ASSX25 CH EJEC2/ELE 31-4 DIMENSIÓN DE LA COLUMNA DERECHA m 0.30 CIÓN ROTULAS EN VIGAS DIMENSIÓN DE LA COLUMNA DERECHA m 0.50	ISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% 950 TIPICO STORY4 % ROTULA IZQUIERDA % 950 TIPICO TORY4 % ROTULA IZQUIERDA % % ROTULA IZQUIERDA % 20.94%	% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 78.07% % ROTULA DERECHA % % ROTULA DERECHA % % ROTULA DERECHA	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA LONGITUD DE LA VIGA m 4.60	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA 0.25 DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.55	20N ROTULAS EN VIGAS- 30X09 SELEPLET, 74 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 00X0 ROTULAS EN VIGAS- 30X00 S EJECIFLE 6-7 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 20N ROTULAS EN VIGAS- 30X00 S EJECOEJE 74 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.33% SEMISOTANO ISOTANO % ROTULA IZQUIERDA % OTULA IZQUIERDA % ROTULA IZQUIERDA % 11.36%	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04%	
LONGITUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA DERECHA DIMENSIÓN DE LA VIGA DIMENSIÓN DE LA COLUMNA DERECHA DIMENSIÓN DE LA COLUMNA DERECHA DIMENSIÓN DE LA VIGA DIMENSIÓN DE LA COLUMNA DERECHA DIMENSIÓN DE LA VIGA DIMENSIÓN DE LA VIGA DIMENSIÓN DE LA COLUMNA DERECHA DIMENSIÓN DE LA VIGA VIGASSEMISTICANO VIGA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA DIMENSIÓN DE LA COLUMNA IZQUIERDA VIGASSEMISTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISTANO VIGASSES CH ELE/ISLE & SEMISTANO VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA VIGASSES CH ELE/ISLE & SEMISTANO VIGASSES CH ELE/ISLE & SEMISTANO VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA VIGASSES CH ELE/ISLE & SEMISTANO VIGASSES CH ELE/ISLE & SEMISTANO LONGITUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA VIGASSES CH ELE/ISLE & SEMISTANO VIGASSES CH ELE/ISLE & SEMISTANO LONGITUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA SK ROTULA IZQUIERDA SK ROTULA DERECHA m m m M M M SK ROTULA I	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA m 2.18	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA M UI DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.30 DISPOS DISPOS	ICION ROTULAS EN VIGAS BASX28 CH ELEVIJEE 94 DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 CICION ROTULAS EN VIGAS ASX28 CH EJEC2/ELE 31-4 DIMENSIÓN DE LA COLUMINA DERECHA M 0.30 CICION ROTULAS EN VIGAS BAJOX60 SE LEC2/ELE 95 DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 DIMENSIÓN DE LA COLUMINA DERECHA	PSO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PSTORY4 % ROTULA IZQUIERDA % 22.09% PISO TIPICO TORY4 % ROTULA IZQUIERDA % 20.64% SEMISOTANO	% ROTULA DERECHA % 80.54% % ROTULA DERECHA % ROTULA DERECHA % 73.07%	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 1.50 DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA 0.25 DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.50 DISPOSI	20N ROTULAS EN VIGAS- 30X00 S LEBELE 7 A SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 30X00 S LECCELE 6 A SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 20ÓN ROTULAS EN VIGAS- 30X00 S LECCELE 6 A SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 20ÓN ROTULAS EN VIGAS- 30X00 S LOCE/LE 7 A SEM 0.50 20ÓN ROTULAS EN VIGAS-	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.33% SEMISOTANO % ROTULA IZQUIERDA % 9.24% SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 11.96% SEMISOTANO	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA % 88.04%	
m m % % 5:96 0.25 0.50 7.15% 90.77% 3.24 0.30 0.25 13.89% 86.88% DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO USAQUE PERTIE ES CSIMOTANO USA STATUE PERTIE ES CSIMOTANO <th co<="" td=""><td>LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA m 2.18</td><td>DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m DISPOS DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M USPOS VICA</td><td>ICION ROTULAS EN VIGAS blassiz of LEJALIELES DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS- CIÓN ROTULAS EN VIGAS- DIMENSIÓN DE LA COLUMINA DERECHA DIMENSIÓN DE LA COLUMINA DERECHA M 0.30 CIÓN ROTULAS EN VIGAS- DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 CIÓN ROTULAS EN VIGAS-</td><td>PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % 22.0% PISO TIPICO TORY4 % ROTULA IZQUIERDA % 20.64% SEMISOTANO</td><td>% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 73.07% % ROTULA DERECHA % 74.77%</td><td>LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA M LONGITUD DE LA VIGA m 4.60</td><td>DISPOSI VIG4 DIMENSIÓN DE LA COLUMA IZQUIERDA m DISPOSI VIG4 DIMENSIÓN DE LA COLUMA IZQUIERDA 0.25 DISPOSI VIG4 DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LO DISPOSI VIG4</td><td>ADA ROTULAS EN VIGAS- SOX60 S EJEBEJE 7-4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 150 DÓN ROTULAS EN VIGAS- SOX60 S EJECEJE 6-7 SEM DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M SOX60 FLEZEJE 1-4 SEM JON SON ROTULAS EN VIGAS- SOX60 FLEZEJE 1-8 SEM SOX50 F</td><td>SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO % ROTULA IZQUIERDA % 9.24% SEMISOTANO % ROTULA IZQUIERDA % 11.96% SEMISOTANO</td><td>% ROTULA DERECHA % 88.04% % % ROTULA DERECHA % 80.04%</td></th>	<td>LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA m 2.18</td> <td>DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m DISPOS DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M USPOS VICA</td> <td>ICION ROTULAS EN VIGAS blassiz of LEJALIELES DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS- CIÓN ROTULAS EN VIGAS- DIMENSIÓN DE LA COLUMINA DERECHA DIMENSIÓN DE LA COLUMINA DERECHA M 0.30 CIÓN ROTULAS EN VIGAS- DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 CIÓN ROTULAS EN VIGAS-</td> <td>PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % 22.0% PISO TIPICO TORY4 % ROTULA IZQUIERDA % 20.64% SEMISOTANO</td> <td>% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 73.07% % ROTULA DERECHA % 74.77%</td> <td>LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA M LONGITUD DE LA VIGA m 4.60</td> <td>DISPOSI VIG4 DIMENSIÓN DE LA COLUMA IZQUIERDA m DISPOSI VIG4 DIMENSIÓN DE LA COLUMA IZQUIERDA 0.25 DISPOSI VIG4 DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LO DISPOSI VIG4</td> <td>ADA ROTULAS EN VIGAS- SOX60 S EJEBEJE 7-4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 150 DÓN ROTULAS EN VIGAS- SOX60 S EJECEJE 6-7 SEM DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M SOX60 FLEZEJE 1-4 SEM JON SON ROTULAS EN VIGAS- SOX60 FLEZEJE 1-8 SEM SOX50 F</td> <td>SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO % ROTULA IZQUIERDA % 9.24% SEMISOTANO % ROTULA IZQUIERDA % 11.96% SEMISOTANO</td> <td>% ROTULA DERECHA % 88.04% % % ROTULA DERECHA % 80.04%</td>	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA m 2.18	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m DISPOS DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M USPOS VICA	ICION ROTULAS EN VIGAS blassiz of LEJALIELES DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS- CIÓN ROTULAS EN VIGAS- DIMENSIÓN DE LA COLUMINA DERECHA DIMENSIÓN DE LA COLUMINA DERECHA M 0.30 CIÓN ROTULAS EN VIGAS- DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 CIÓN ROTULAS EN VIGAS-	PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % 22.0% PISO TIPICO TORY4 % ROTULA IZQUIERDA % 20.64% SEMISOTANO	% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 73.07% % ROTULA DERECHA % 74.77%	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA M LONGITUD DE LA VIGA m 4.60	DISPOSI VIG4 DIMENSIÓN DE LA COLUMA IZQUIERDA m DISPOSI VIG4 DIMENSIÓN DE LA COLUMA IZQUIERDA 0.25 DISPOSI VIG4 DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LO DISPOSI VIG4	ADA ROTULAS EN VIGAS- SOX60 S EJEBEJE 7-4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 150 DÓN ROTULAS EN VIGAS- SOX60 S EJECEJE 6-7 SEM DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M DIMENSIÓN DE LA COLUMNA DERECHA M SOX60 FLEZEJE 1-4 SEM JON SON ROTULAS EN VIGAS- SOX60 FLEZEJE 1-8 SEM SOX50 F	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO % ROTULA IZQUIERDA % 9.24% SEMISOTANO % ROTULA IZQUIERDA % 11.96% SEMISOTANO	% ROTULA DERECHA % 88.04% % % ROTULA DERECHA % 80.04%
5.96 0.25 0.50 7.13% 90.77% 3.24 0.30 0.25 13.89% 86.89% DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGA3060 P EJEF/LE E-C SEMISOTANO UGA30060 P EJEF/LE E-C SEMISOTANO VIGA3060 P EJEF/LE E-C SEMISOTANO VIGA3000 P EJEF/LE E-C SEMISOTANO VIGA300 D EJEF/LE E-C SEMISOTANO <td>LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA M 2.18</td> <td>DISPOS VIC UIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.35 DISPOS VIV DIMENSIÓN DE LA COLUMNA IZQUIERDA DISPOSI VIGA COLUMNA IZQUIERDA</td> <td>ICION ROTULAS EN VIGAS BASX28 CH ELEAVIEJE 95 DIMENSIÓN DE LA COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA</td> <td>PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % 22.09% PISO TIPICO TORY4 % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA % 20.94% SEEMISOTANO % ROTULA IZQUIERDA % ROTULA IZQUIERDA</td> <td>% ROTULA DERECHA % 80.54% 80.54% % ROTULA DERECHA % % ROTULA DERECHA % % ROTULA DERECHA</td> <td>LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA</td> <td>DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.50 DISPOSI VIGAS DISPOSI VIGAS</td> <td>201 ROTULAS EN VIGAS: 20109 SLEEPLE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 20100 ROTULAS EN VIGAS: 20100 S ELECCELE 7-3 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 2010 ROTULAS EN VIGAS: 30000 S ELECCELE 7-4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 2010 ROTULAS EN VIGAS: 3020 S ELECELE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA</td> <td>SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.33% SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 11.95% SEMISOTANO MISOTANO % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA</td> <td>% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA % % ROTULA DERECHA</td>	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA M 2.18	DISPOS VIC UIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.35 DISPOS VIV DIMENSIÓN DE LA COLUMNA IZQUIERDA DISPOSI VIGA COLUMNA IZQUIERDA	ICION ROTULAS EN VIGAS BASX28 CH ELEAVIEJE 95 DIMENSIÓN DE LA COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA M COLUMNA DERECHA	PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % 22.09% PISO TIPICO TORY4 % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA % 20.94% SEEMISOTANO % ROTULA IZQUIERDA % ROTULA IZQUIERDA	% ROTULA DERECHA % 80.54% 80.54% % ROTULA DERECHA % % ROTULA DERECHA % % ROTULA DERECHA	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.50 DISPOSI VIGAS DISPOSI VIGAS	201 ROTULAS EN VIGAS: 20109 SLEEPLE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 20100 ROTULAS EN VIGAS: 20100 S ELECCELE 7-3 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 2010 ROTULAS EN VIGAS: 30000 S ELECCELE 7-4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.50 2010 ROTULAS EN VIGAS: 3020 S ELECELE 7-8 SEM DIMENSIÓN DE LA COLUMNA DERECHA	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.33% SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 11.95% SEMISOTANO MISOTANO % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA % % ROTULA DERECHA	
DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO DISPOSICIÓN ROTULAS EN VIGAS-SEMISOTANO VIGA30X60 P EJE/FILE B-C SEMISOTANO UCNGITUD DE LA VIGA DIMENSIÓN DE LA COLUMNA IZQUERDA DIMENSIÓN DE LA COLUMNA DERCHA SKOTULA IZQUERDA % ROTULA JEDRECHA NOTULA DERCHA Montula Derecha	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA m	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.35 DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M	ICION ROTULAS EN VIGAS BASX28 CH ELEA/IELE 9 DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 CION ROTULAS EN VIGAS ASX28 CH ELEC2/ELE 31-4 DIMENSIÓN DE LA COLUMINA DERECHA M 0.33 CION ROTULAS EN VIGAS BAJOXON DE LA COLUMINA DERECHA M 0.50 DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 DIMENSIÓN DE LA COLUMINA DERECHA M	PSO TIPICO STORY4 % ROTULA IZQUERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUERDA % 22.09% PISO TIPICO TORY4 % ROTULA IZQUERDA % 20.64% EEMISOTIMO ISOTANO % ROTULA IZQUERDA %	% ROTULA DERECHA % 80.54% % 80.54% % 70.07% %	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA m	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DISPOSI DISPOSI DISPOSI DISPOSI VIGA2 DIMENSIÓN DE LA COLUMNA IZQUIERDA M DISPOSI VIGA2 DIMENSIÓN DE LA COLUMNA IZQUIERDA M	201 ROTULAS EN VIGAS- 2010 ROTULAS EN VIGAS- 2010 ROTULAS EN VIGAS- 00 ROTULAS EN VIGAS- 2010 ROTU	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.33% SEMISOTANO SOTANO % ROTULA IZQUIERDA % % ROTULA IZQUIERDA % 11.96% SEMISOTANO WISOTANO % ROTULA IZQUIERDA %	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA % ROTULA DERECHA %	
VIGA30X60 P EJE7/EJE B-C SEMISOTANO LONGITUD DE LA VIGA DIMENSIÓN DE LA COLUMNA ZQUERDA DIMENSIÓN DE LA COLUMNA ZQUERDA DIMENSIÓN DE LA COLUMNA DERECHA WROTULA JZQUERDA % ROTULA JZQUERDA DIMENSIÓN DE LA VIGA DIMENSIÓN DE LA COLUMNA ZQUERDA DIMENSIÓN DE LA COLUMNA DERECHA DIMENSIÓN DE LA SKOTULA JZQUERDA DIMENSIÓN DE LA VIGA DIMENSIÓN DE LA COLUMNA DERECHA MROTULA DERECHA % ROTULA DERECHA MROTULA DERECHA MROTULA DERECHA MROTULA DERECHA MROTULA DERECHA % ROTULA JZQUERDA MROTULA DERECHA MROTULA DERECHA % ROTULA JZQUERDA MROTULA DERECHA MROTULA DERECHA % ROTULA JZQUERDA % ROTULA JZQUERDA MROTULA DERECHA MROTULA DERECHA % ROTULA JZQUERDA % ROTULA DERECHA MROTULA DERECHA MROTULA DERECHA % ROTULA JZQUERDA % ROTULA DERECHA % ROTULA JZQUERDA MROTULA DERECHA MROTULA DERECHA % ROTULA JZQUERDA % ROTULA DERECHA % ROTULA DERECHA MROTULA DERECHA MROTULA DERECHA % ROTULA JZQUERDA % ROTULA DERECHA	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA m 2.18 LONGITUD DE LA VIGA m 5.96	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.35 DISPOS VIGA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.30 DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA	ICION ROTULAS EN VIGAS bassiz of LEJAVIELB 3 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS ASX25 CH ELECIZELE 314 DIMENSIÓN DE LA COLUMINA DERECHA m 0.30 CIÓN ROTULAS EN VIGAS ASA0X05 S ELECIZELES 45 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 DIMENSIÓN DE LA COLUMINA DERECHA M	PSO TIPICO STORY4 % ROTULA IZOUERDA % PISO TIPICO STORY4 % ROTULA IZOUERDA % 7.13%	** ROTULA DERECHA ** ROTULA DERECHA	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 3.24	DISPOSI VIGA DIMENSIÓN DE LA COLUMA IZQUIERDA M 1.50 DISPOSI UIGA DIMENSIÓN DE LA COLUMA IZQUIERDA M 0.25 DISPOSI VIGA DIMENSIÓN DE LA COLUMA IZQUIERDA M 0.50 DISPOSI VIGA DISPOSI DISPOSI VIGA DISPOSI VIGA DISPOSI VIGA DISPOSI VIGA DISPOSI DISPOSI DISPOSI VIGA DISPOSI VIGA DISPOSI D	20N ROTULAS EN VIGAS- 30X09 S ELEPLET 74 SEM DIMENSIÓN DE LA COLUMNA DERECHA 0.50 20N ROTULAS EN VIGAS- 30X09 S ELECELE 6-7 SEM DIMENSIÓN DE LA COLUMNA DERECHA 0.50 20N ROTULAS EN VIGAS- 30X09 S ELECELE 74 SEM DIMENSIÓN DE LA COLUMNA DERECHA 0.50 20N ROTULAS EN VIGAS- 30X09 S ELECELE 74 SEM DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 20N ROTULAS EN VIGAS- 30X00 S ELECELE 74 SEM DIMENSIÓN DE LA COLUMNA DERECHA	SEMISOTANO ISOTANO % ROTULA IZQUIERDA % 22.83% SEMISOTANO % ROTULA IZQUIERDA % 9.24% SEMISOTANO % ROTULA IZQUIERDA % 11.96% SEMISOTANO % ROTULA IZQUIERDA % 13.84%	% ROTULA DERECHA % 88.04% % % ROTULA DERECHA	
Image: Columna Izquierda Dimensión de La Columna Izquierda Dimensión de La Columna Izquierda Dimensión de La Rotrula Izquierda % Rotrula Izquierda % Rotrula Izquierda % Rotrula Izquierda M Rotrula Derecha M	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA m 2.18 LONGITUD DE LA VIGA m LONGITUD DE LA	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.35 DISPOS VIQ DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOSI OLEDA DISPOSI DISPOSI DISPOSI DISPOSI DISPOSI MENSIÓN DE LA	ICION ROTULAS EN VIGAS BASX28 CH ELEVIEJE 95 DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS ASX25 CH EJEC2/ELE 31-4 DIMENSIÓN DE LA COLUMNA DERECHA m 0.30 CIÓN ROTULAS EN VIGAS ADX050 S ELEC2/ELE 8-9 SE DIMENSIÓN DE LA COLUMNA DERECHA m 0.50 CIÓN ROTULAS EN VIGAS: 0.050 CIÓN ROTULAS EN VIGAS:	PS0 TIPICO STORY4 % ROTULA IZQUERDA % 15.68% PS0 TIPICO STORY4 % ROTULA IZQUERDA % 92.08% PRO TIPICO TORY4 % ROTULA IZQUERDA % 20.64% SEMISOTANO % ROTULA IZQUIERDA	% ROTULA DERECHA % 80.54% 80.54% % ROTULA DERECHA % 73.07% % ROTULA DERECHA % 74.77% % ROTULA DERECHA % 90.77%	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA m 3.24	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.50 DISPOSI DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA DISPOSI DISPOS	201 ROTULAS EN VIGAS: 2010 SELEPLE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA 0.50 2010 ROTULAS EN VIGAS: 2010 ROTULAS EN VIGAS:	SEMISOTANO SIGOTANO S	% ROTULA DERECHA % 88.04% % % ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04%	
m m m % % m m % % 601 0.50 1.50 9.15% 92.5% 3.24 0.30 0.25 13.8% 96.8%	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA M M 5.96	DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.35 DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA M DIMENSIÓN DE LA COLUMNA IZQUIERDA	ICION ROTULAS EN VIGAS BASX28 CH EJEA/UEL 49 DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 CICION ROTULAS EN VIGAS- ASSX25 CH EJEC/IEL 49 DIMENSIÓN DE LA COLUMINA DERECHA M 0.30 CICION ROTULAS EN VIGAS- SADX60 P EJE/IEL 49 SEM DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 DIÓN ROTULAS EN VIGAS- DIÓN ROTULAS EN VIGAS- DIÓN ROTULAS EN VIGAS-	PSO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % 22.09% PISO TIPICO TORY4 % ROTULA IZQUIERDA % 20.64% EMISTOTANO % ROTULA IZQUIERDA % 7.13% EMISTANO	% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 73.07% % ROTULA DERECHA % % ROTULA DERECHA % 90.77%	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 3.24	DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M DISPOSI VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.25 DISPOSI VIGAS DISPOSI VIGAS DISPOSI VIGAS DISPOSI VIGAS DISPOSI VIGAS DISPOSI VIGAS	201 ROTULAS EN VIGAS: 2010 SELEPLET A SEM DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 2010 ROTULAS EN VIGAS: 2010 SE JECCELE FA SEM DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 2010 ROTULAS EN VIGAS: 2010 ROTULAS EN VIGAS:	SEMISOTANO SISOTANO N ROTULA IZQUIERDA N ROTULA IZQUIERDA N ROTULA IZQUIERDA N ROTULA IZQUIERDA N SZ4% SEMISOTANO SISOTANO N ROTULA IZQUIERDA N S SEMISOTANO NISOTANO NISOTANO NISOTANO NISOTANO NISOTANO NISOTANO SEMISOTANO SEMISOTANO SEMISOTANO SEMISOTANO	% ROTULA DERECHA % 88.04% % % ROTULA DERECHA	
···· ···· <th td="" ·<=""><td>LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA m 2.18 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA</td><td>DISPOS VIC UIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.35 DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA 0.30 DISPOSI OLIGINA IZQUIERDA VICIA DIMENSIÓN DE LA COLUMNA IZQUIERDA VICIA DIMENSIÓN DE LA COLUMNA IZQUIERDA</td><td>(CON ROTULAS EN VIGAS sASX23 CH EJEAVIEJE 95 sASX23 CH EJEAVIEJE 95 (DIMENSIÓN DE LA COLLIMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX25 CH EJEC2/ELE 31-4 DIMENSIÓN DE LA COLLIMINA DERECHA m 0.30 (CÓN ROTULAS EN VIGAS COLUMINA DERECHA m 0.30 (CÓN ROTULAS EN VIGAS SASX05 SE LECC/ELE 84 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECC/ELE 84 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECC/ELE 84 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECR/ELE 85 EM DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECR/ELE 85 EM DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECR/ELE 85 M DIMENSIÓN DE LA COLUMINA DERECHA m (0.50 (LÍNA M (DI DERECHA M (DI DERECHA (DIDERECHA (DI DERECHA (DI DERECHA (DIDERECHA (DI DE</td><td>ISO TIPICO STORY4 % ROTULA IZOUERDA % 15.68% 950 TIPICO STORY4 % ROTULA IZOUERDA % RSO TIPICO TORY4 % ROTULA IZOUERDA % SENISOTANO % ROTULA IZOUERDA % 7.13% SENISOTANO ISOTANO</td><td>% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 70.07% % % ROTULA DERECHA % 90.77% % ROTULA DERECHA % % ROTULA DERECHA</td><td>LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 3.24 LONGITUD DE LA VIGA</td><td>DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA DIMENSIÓN DE LA COLUMA IZQUIERDA DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA</td><td>201 ROTULAS EN VIGAS: 2010 SELEPLE 7:4 SEM DIMENSIÓN DE LA 0.00 2010 MILLAS EN VIGAS: 2010 ROTULAS EN VIGAS: 2010 ROTULAS EN VIGAS: 2010 SELECELE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.050 2010 ROTULAS EN VIGAS: 2010 SELECELE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.050 2010 ROTULAS EN VIGAS: 2020 ROTULAS EN VIG</td><td>SEMISOTANO SIGOTANO S</td><td>% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA % % ROTULA DERECHA</td></th>	<td>LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA m 2.18 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA</td> <td>DISPOS VIC UIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.35 DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA 0.30 DISPOSI OLIGINA IZQUIERDA VICIA DIMENSIÓN DE LA COLUMNA IZQUIERDA VICIA DIMENSIÓN DE LA COLUMNA IZQUIERDA</td> <td>(CON ROTULAS EN VIGAS sASX23 CH EJEAVIEJE 95 sASX23 CH EJEAVIEJE 95 (DIMENSIÓN DE LA COLLIMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX25 CH EJEC2/ELE 31-4 DIMENSIÓN DE LA COLLIMINA DERECHA m 0.30 (CÓN ROTULAS EN VIGAS COLUMINA DERECHA m 0.30 (CÓN ROTULAS EN VIGAS SASX05 SE LECC/ELE 84 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECC/ELE 84 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECC/ELE 84 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECR/ELE 85 EM DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECR/ELE 85 EM DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECR/ELE 85 M DIMENSIÓN DE LA COLUMINA DERECHA m (0.50 (LÍNA M (DI DERECHA M (DI DERECHA (DIDERECHA (DI DERECHA (DI DERECHA (DIDERECHA (DI DE</td> <td>ISO TIPICO STORY4 % ROTULA IZOUERDA % 15.68% 950 TIPICO STORY4 % ROTULA IZOUERDA % RSO TIPICO TORY4 % ROTULA IZOUERDA % SENISOTANO % ROTULA IZOUERDA % 7.13% SENISOTANO ISOTANO</td> <td>% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 70.07% % % ROTULA DERECHA % 90.77% % ROTULA DERECHA % % ROTULA DERECHA</td> <td>LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 3.24 LONGITUD DE LA VIGA</td> <td>DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA DIMENSIÓN DE LA COLUMA IZQUIERDA DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA</td> <td>201 ROTULAS EN VIGAS: 2010 SELEPLE 7:4 SEM DIMENSIÓN DE LA 0.00 2010 MILLAS EN VIGAS: 2010 ROTULAS EN VIGAS: 2010 ROTULAS EN VIGAS: 2010 SELECELE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.050 2010 ROTULAS EN VIGAS: 2010 SELECELE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.050 2010 ROTULAS EN VIGAS: 2020 ROTULAS EN VIG</td> <td>SEMISOTANO SIGOTANO S</td> <td>% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA % % ROTULA DERECHA</td>	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA m 2.18 LONGITUD DE LA VIGA m LONGITUD DE LA VIGA	DISPOS VIC UIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA m 0.35 DISPOS VIC DIMENSIÓN DE LA COLUMNA IZQUIERDA 0.30 DISPOSI OLIGINA IZQUIERDA VICIA DIMENSIÓN DE LA COLUMNA IZQUIERDA VICIA DIMENSIÓN DE LA COLUMNA IZQUIERDA	(CON ROTULAS EN VIGAS sASX23 CH EJEAVIEJE 95 sASX23 CH EJEAVIEJE 95 (DIMENSIÓN DE LA COLLIMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX25 CH EJEC2/ELE 31-4 DIMENSIÓN DE LA COLLIMINA DERECHA m 0.30 (CÓN ROTULAS EN VIGAS COLUMINA DERECHA m 0.30 (CÓN ROTULAS EN VIGAS SASX05 SE LECC/ELE 84 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECC/ELE 84 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECC/ELE 84 DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECR/ELE 85 EM DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECR/ELE 85 EM DIMENSIÓN DE LA COLUMINA DERECHA m 0.50 (CÓN ROTULAS EN VIGAS SASX05 SE LECR/ELE 85 M DIMENSIÓN DE LA COLUMINA DERECHA m (0.50 (LÍNA M (DI DERECHA M (DI DERECHA (DIDERECHA (DI DERECHA (DI DERECHA (DIDERECHA (DI DE	ISO TIPICO STORY4 % ROTULA IZOUERDA % 15.68% 950 TIPICO STORY4 % ROTULA IZOUERDA % RSO TIPICO TORY4 % ROTULA IZOUERDA % SENISOTANO % ROTULA IZOUERDA % 7.13% SENISOTANO ISOTANO	% ROTULA DERECHA % 80.54% % ROTULA DERECHA % 70.07% % % ROTULA DERECHA % 90.77% % ROTULA DERECHA % % ROTULA DERECHA	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 3.24 LONGITUD DE LA VIGA	DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA DIMENSIÓN DE LA COLUMA IZQUIERDA DIMENSIÓN DE LA COLUMA IZQUIERDA M DIMENSIÓN DE LA COLUMA IZQUIERDA	201 ROTULAS EN VIGAS: 2010 SELEPLE 7:4 SEM DIMENSIÓN DE LA 0.00 2010 MILLAS EN VIGAS: 2010 ROTULAS EN VIGAS: 2010 ROTULAS EN VIGAS: 2010 SELECELE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.050 2010 ROTULAS EN VIGAS: 2010 SELECELE 7:4 SEM DIMENSIÓN DE LA COLUMNA DERECHA M 0.050 2010 ROTULAS EN VIGAS: 2020 ROTULAS EN VIG	SEMISOTANO SIGOTANO S	% ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA % 88.04% % ROTULA DERECHA % % ROTULA DERECHA
	LONGITUD DE LA VIGA m 2.87 LONGITUD DE LA VIGA m 2.15 LONGITUD DE LA VIGA m 5.96 LONGITUD DE LA VIGA	DISPOS VIC UIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.30 DISPOS VIG DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.35 DISPOS VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.30 DISPOS VIGA DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.25 DISPOSI VIGA	ICIÓN ROTULAS EN VIGAS BASX28 CH EJEA/UEL 93 DIMENSIÓN DE LA COLUMINA DERECHA M COLUMINA DERECHA DIMENSIÓN DE LA COLUMINA DERECHA M 0.30 CIÓN ROTULAS EN VIGAS- GADIXEN SE LACIFICIE 84 95 DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 CIÓN ROTULAS EN VIGAS- 30/60 P EJE/FIEL 84 SEM DIMENSIÓN DE LA COLUMINA DERECHA M 0.50 CIÓN ROTULAS EN VIGAS- SIÓN ROTULAS EN VIGAS- SIÓN ROTULAS EN VIGAS- COLUMINA DERECHA M	PISO TIPICO STORY4 % ROTULA IZQUIERDA % 15.68% PISO TIPICO STORY4 % ROTULA IZQUIERDA % 22.08% PISO TIPICO TORY4 % ROTULA IZQUIERDA % 20.64% SEMISOTANO % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA % ROTULA IZQUIERDA	% ROTULA DERECHA % 80.84% 80.84% % ROTULA DERECHA % 78.07% % ROTULA DERECHA % % ROTULA DERECHA	LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 4.60 LONGITUD DE LA VIGA m 3.24 LONGITUD DE LA VIGA m	DIMENSIÓN DE LA COLUMNA IZQUIERDA M M DIMENSIÓN DE LA COLUMNA IZQUIERDA M M DIMENSIÓN DE LA COLUMNA IZQUIERDA M M 0.25 DISPOSI VIGA2 DIMENSIÓN DE LA COLUMNA IZQUIERDA M 0.50 DISPOSI VIGA3 DIMENSIÓN DE LA COLUMNA IZQUIERDA M M 0.30 DISPOSI VIGA3 DIMENSIÓN DE LA COLUMNA IZQUIERDA	201 ROTULAS EN VIGAS- 201 ROTULAS EN VIGAS- 201 ROTULAS EN VIGAS- 0.00 DE LACOLES EN VIGAS- 201 ROTULAS EN VIG	SEMISOTANO SISOTANO SISOTANO SISOTANO SEMISOTANO SISOTANO	% ROTULA DERECHA % 88.04% % % ROTULA DERECHA	

Rótulas P. en vigas en los niveles de la estructura.

Figura 131

Asignación de datos de rótulas en vigas

Criterios de aceptación numérica en vigas

			Modeling Parameters*			Acceptance Criteria*			
			Plastic Rota (radi	tions Angle ans)	Residual Strength Ratio	Plastic Rotations Angle (radians) Performance Level			
	Conditions		а	ь	<i>c</i>	ю	LS	CP	
Condition	i. Beams controlled by fl	exure ^b							
$\frac{\rho - \rho'}{\rho_{bal}}$	Transverse reinforcement ^c	$\frac{V}{b_{w}d\sqrt{f_{e}'}}^{d}$							
≤0.0	С	≤3 (0.25)	0.025	0.05	0.2	0.010	0.025	0.05	
≤0.0	С	≥6 (0.5)	0.02	0.04	0.2	0.005	0.02	0.04	
≥0.5	С	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03	
≥0.5	С	≥6 (0.5)	0.015	0.02	0.2	0.005	0.015	0.02	
≤0.0	NC	≤3 (0.25)	0.02	0.03	0.2	0.005	0.02	0.03	
≤0.0	NC	≥6 (0.5)	0.01	0.015	0.2	0.0015	0.01	0.015	
≥0.5	NC	≤3 (0.25)	0.01	0.015	0.2	0.005	0.01	0.015	
≥0.5	NC	≥6 (0.5)	0.005	0.01	0.2	0.0015	0.005	0.01	
Condition	ii. Beams controlled by s	hear ^b							
Stirrup sp	acing $\leq d/2$		0.0030	0.02	0.2	0.0015	0.01	0.02	
Stirrup sp	acing > $d/2$		0.0030	0.01	0.2	0.0015	0.005	0.01	
Condition	iii. Beams controlled by	inadequate development	or splicing along the	e span ^b					
Stirrup sp	acing $\leq d/2$	1	0.0030	0.02	0.0	0.0015	0.01	0.02	
Stirrup sp	acing > $d/2$		0.0030	0.01	0.0	0.0015	0.005	0.01	
Condition	iv. Beams controlled by	inadequate embedment i	nto beam-column jo	int ^b					
			0.015	0.03	0.2	0.01	0.02	0.03	

NOTE: f[']_i in lbfn² (MPa) units. "Values between those listed in the table should be determined by linear interpolation. "Values between those listed in the table should be determined by linear interpolation. "Where more than one of conditions i, ii, ii, and iv occur for a given component, use the minimum appropriate numerical value from the table. "C" and "NC" are abbreviations for conforming and nonconforming transverse reinforcement, respectively. Transverse reinforcement is conforming if, within the flexural plastic hinge region, hoops are spaced at *s d13*, and if, for components of moderate and high ducility demand, the strength provided by the hoops (V) is at least 34 of the design shear. Otherwise, the transverse reinforcement is considered nonconforming. "V is the design shear force from NSP or NDP.

Figura 133

Datos de propiedades para rótula B454H1-Momento M3

					Туре
Point	Moment/SF	Rotatio	n/SF		Moment - Rotation
E-	-0.2	-0.0	15		O Moment - Curvature
D-	-0.2	-0.02	525		Hinge Length
- C-	-1.808195	-0.0	25		Relative Length
8-	-1	0			
A	0	0			Load Carrying Capacity Beyond Point E
В	1	0			O Danas To Zona
- C .	1.808195	0.03	25		Urops to Zero
D	0.2	0.025	525		Is Extrapolated
				BC - Between Points B and C CD - Between Points C and D	No Parameters Are Required For This Hysteresis Type
caling for N	Ioment and Rotation	Homet SE	Positive	BC - Between Points B and C CD - Between Points C and D	nysteress No Parameters Arc Required For This Hysteresis Type
caling for k	loment and Rotation	Moment SF	Positive	BC - Between Points B and C CD - Between Points C and D	nysteress source No Parameters Are Required For This Hysteresis Type
caling for N Use Y Use Y (Stee	loment and Rotation ield Moment ield Rotation I Objects Only)	Moment SF Rotation SF	Positive	BC - Between Points B and C CD - Between Points C and D Negative tonf-m	nysteresa soropic o No Parameters Are Required For This Hysteresis Type
Caling for N Use Y Use Y (Stee	loment and Rotation ield Moment ield Rotation (Objects Only) Criteria (Plastic Rotatic	Moment SF Rotation SF pn/SF)	Positive 1 Positive	BC - Between Points B and C CD - Between Points C and D Negative tonf-m	nysteress sources o No Parameters Are Required For This Hysteress Type
caling for N Use Y Use Y (Stee cceptance	toment and Rotation ield Moment ield Rotation Objects Only) Criteria (Plastic Rotatic mediate Occupancy	Moment SF Rotation SF on/SF)	Positive 1 Positive 0.01	BC - Between Points B and C CD - Between Points C and D Negative Negative	nysteress Sorope
Caling for N Use Y Use Y (Stee Cceptance	Ioment and Rotation initi Moment initi Rotation Objects Only) Criteria (Plastic Rotatic nediate Occupancy a Safety	Moment SF Rotation SF on/SF)	Positive 1 Positive 0.01 0.025	BC - Between Points B and C CD - Between Points C and D Negative Negative	nysteress Sorope

• Disposición rótulas en COLUMNAS

Figura 134

Rótulas P. en columnas en los niveles de la estructura

	DI	SPOSICIÓN ROTULAS EN C	OLUMNAS					
		COLUMNAL 50X150 T.T	ECHO					
LONGITUD DE LA COLUMNA	DIMENSIÓN DE LA VIGA INFERIOR	DIMENSIÓN DE LA VIGA SUPERIOR	% ROTULA INFERIOR	% ROTULA SUPERIOR				
m	m	m	%	%				
3.25	0.60	0.60	9.23%	90.77%				
DISPOSICIÓN ROTULAS EN COLUMNAS								
COLUMNAL 50X150 STORY 4								
LONGITUD DE LA COLUMNA	DIMENSIÓN DE LA VIGA INFERIOR	DIMENSIÓN DE LA VIGA SUPERIOR	% ROTULA INFERIOR	% ROTULA SUPERIOR				
m	m	m	%	%				
3.25	0.60	0.60	9.23%	90.77%				
	DI	SPOSICIÓN ROTULAS EN C	OLUMNAS					
		COLUMNAL 50X150 STO	DRY 3					
LONGITUD DE LA COLUMNA	DIMENSIÓN DE LA VIGA INFERIOR	DIMENSIÓN DE LA VIGA SUPERIOR	% ROTULA INFERIOR	% ROTULA SUPERIOR				
m	m	m	%	%				
3.25	0.60	0.60	9.23%	90.77%				
	DI	SPOSICIÓN ROTULAS EN C	OLUMNAS					
		COLUMNAL 50X150 STO	DRY 2					
LONGITUD DE LA COLUMNA	DIMENSIÓN DE LA VIGA INFERIOR	DIMENSIÓN DE LA VIGA SUPERIOR	% ROTULA INFERIOR	% ROTULA SUPERIOR				
m	m	m	%	%				
3.25	0.60	0.60	9.23%	90.77%				
	DI	SPOSICIÓN ROTULAS EN C	OLUMNAS					
		COLUMNAL 50X150 STO	DRY 1					
LONGITUD DE LA COLUMNA	DIMENSIÓN DE LA VIGA INFERIOR	DIMENSIÓN DE LA VIGA SUPERIOR	% ROTULA INFERIOR	% ROTULA SUPERIOR				
m	m	m	%	%				
3.25	0.60	0.60	9.23%	90.77%				
	DI	SPOSICIÓN ROTULAS EN C	OLUMNAS					
		COLUMNAL 50X150 SEMIS	OTANO					
LONGITUD DE LA COLUMNA	DIMENSIÓN DE LA VIGA INFERIOR	DIMENSIÓN DE LA VIGA SUPERIOR	% ROTULA INFERIOR	% ROTULA SUPERIOR				
m	m	m	%	%				
3.25	0.60	0.60	9.23%	90.77%				

Figura 135

Rótulas P. en vigas en los niveles de la estructura

Datos de asignación de rótulas plásticas en columnas

Figura 137

Criterios de aceptación numérica en columnas

				odeling Paramete	n*		cceptance Criter	ria"
			Plastic Rote (red	itiona Angle iana)	Residual Strength Ratio	Plastic	Actations Angle Performance Lev	(rediens)
	Conditiona			4	¢	10	LS	CP
Condition i.*								
P '	$a = \frac{A_r}{A_r}$							
A. J.	b_s							
\$0.1	20.006		0.035	0.060	0.2	0.005	0.045	0.060
20.6	20.006		0.010	0.010	0.0	0.003	0.009	0.010
50.1	=0.002		0.027	0.034	0.2	0.005	0.027	0.034
20.6	=0.002		0.005	0.005	0.0	0.002	0.004	0.005
Condition ii.*								
P *	a = <u>A</u> ,	<u>v</u> *						
A.f.	$p = \frac{b_s s}{b_s s}$	$b_d \sqrt{f_c^2}$						
\$0.1	20.006	\$3 (0.25)	0.032	0.060	0.2	0.005	0.045	0.060
\$0.1	20.006	26 (0.5)	0.025	0.060	0.2	0.005	0.045	0.060
20.6	20.006	\$3 (0.25)	0.010	0.010	0.0	0.003	0.009	0.010
20.6	20.006	26 (0.5)	0.008	0.008	0.0	0.003	0.007	0.008
s0.1	\$0.0005	\$\$ (0.25)	0.012	0.012	0.2	0.005	0.010	0.012
\$0.1	≤0.0005	26 (0.5)	0.006	0.006	0.2	0.004	0.005	0.000
20.6	\$0.0005	\$\$ (0.25)	0.004	0.004	0.0	0.002	0.003	0.004
20.6	\$0.0005	26 (0.5)	0.0	0.0	0.0	0.0	0.0	0.0
Condition iii."								
P	A							
1.1	$P = \frac{1}{b s}$							
\$0.1	20.006		0.0	0.060	0.0	0.0	0.045	0.060
20.6	20.006		0.0	0.008	0.0	0.0	0.007	0.008
\$0.1	\$0,0005		0.0	0.006	0.0	0.0	0.005	0.000
20.6	\$0.0005		0.0	0.0	0.0	0.0	0.0	0.0
Condition in a	Columns controlled by in		- Salara al sera also al s	المراجعة والمراجع				
P *	Comments controlled by in	adequate development or s	pricing along the cit	ar neight				
10	$\rho = \frac{n_c}{h_c}$							
	20.006		0.0	0.060	0.4		0.015	0.067
50.6	20,006		0.0	0.000	0.4	0.0	0.007	0.000
0.1	<0.0005		0.0	0.005	0.3	0.0	0.005	0.008
20.6	<0.0005		0.0	0.000	0.0	0.0	0.00	0.000
20.0	50,4000		-00	0.0	0.0	4.0	and	0.0

in B/n4. (MPa) unix. in those listed in the table should be determined by linear interpolation. ion 104.2.2.1 for definition of coaditions i, ii, and iii. Columns are considered to be controlled by inadequate development or splices where the is are suft the pipe exceeds the starts specified by Fig. (10-2). Where more than one of conditions i, ii, iii, and i'v occurs for a given com-e minimum appropriate numerical value from the table. $A_{ij}^{(r)}$, the platic toration angles that sufficient the table. $A_{ij}^{(r)}$, the platic toration angles should be taken as zero for all performance levels unless the column has transverse reinforcement consisting 135-degree hocks spaced at z d/3 and the strength provided by the boops (V₂ is at least 3/4 of the design shear. Axial load P should be based an expected atrill table caused by gravity and earthquake loads.

on th

Consulte la Sección 10.4.2.2.2 para la definición de las condiciones i, ii y iii. Se considera que las columnas están controladas por un desarrollo inadecuado o empalmes donde la tensión de acero calculada en el empalme excede la tensión de acero especificada por la ecuación. (10-2). Cuando ocurra más de una de las condiciones i, ii, iii y iv para un componente dado, use el valor numérico mínimo apropiado de la pestaña.

Figura 138

Propiedades para rótula C1H1-interacción P-M2-M3

Rótulas en muros estructurales en los niveles de la estructura

Figura 140

Asignación de rótulas plásticas en muros

• •	• •	3	→ ² • •	• • •
er Color O Same a O Make A	s Material Property Col I Fibers Gray	Graphic Wal	I Width Factor Propertie	is ow Properties
Fiber	Area m ²	Coord2	Material	Color
4	0.083	0	FC=210KG/CM2	
5	0.083	0.33392	FC=210KG/CM2	
6	0.083	0.66784	FC=210KG/CM2	
7	0.0415	0.91828	FC=210KG/CM2	
8	0.0005	-0.8348	FY=4200KG/CM2	
	0.0005	-0.50088	FY=4200KG/CM2	
9	0.0005	-0.16696	FY=4200KG/CM2	
9 10		0.16696	FY=4200KG/CM2	
9 10 11	0.0005			
9 10 11 12	0.0005	0.50088	FY=4200KG/CM2	

Criterios de aceptación numéricos en muros estructurales

Table 10-19. Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures—R/C Shear Walls and Associated Components Controlled by Flexure

					Residual	Acceptat	le Plastic Hinge (radians)	Rotation*	
			Plastic Hir (rad	Plastic Hinge Rotation (radians)		Performance Level			
		b	c	ю	LS	CP			
i. Shear walls and w	vall segments								
$(A_{c} - A_{c}')f_{c} + P$	V	Confined Boundary*	0.015						
talaf.	I.I. ST'								
≤0.1	54	Yes	0.010	0.020	0.75	0.005	0.015	0.02	
≤0.1	26	Yes	0.009	0.015	0.40	0.004	0.010	0.01	
≥0.25	<u>≤4</u>	Yes	0.005	0.012	0.60	0.003	0.009	0.01	
≥0.25	26	Yes	0.008	0.010	0.30	0.0015	0.005	0.01	
≤0,1	≤4	No	0.006	0.015	0.60	0.002	0.008	0.01	
≤0.1	26	No	0.003	0.010	0.30	0.002	0.006	0.01	
20.25	<u>≤4</u>	No	0.002	0.005	0.25	0.001	0.003	0.00	
≥0.25	26	No	0.002	0.004	0.20	0.001	0.002	0.00	
ii. Shear wall coupl	ing beams"								
Longitudinal reinfor transverse reinforce	ment ^d	$\frac{V}{t - \sqrt{f'_{i}}}$		0.050					
Conventional longit	udinal	\$3	0.025	0.040	0.75	0.010	0.025	0.05	
reinforcement with transverse reinforce	conforming ment	26	0.020	0.035	0.50	0.005	0.020	0.04	
Conventional longit	udinal	\$3	0.020	0.025	0.50	0.006	0.020	0.03	
reinforcement with nonconforming tran reinforcement	sverse	26	0.010	0.050	0.25	0.005	0.010	0.02	
Diagonal reinforcen	nent	NA	0.030	0.050	0.80	0.006	0.030	0.05	

Linear interpolation between values listed in the table shall be permitted. ¹A boundary element shall be considered confined where transverse reinforcement exceeds 75% of the requirements given in ACI 318 and spacing of transverse reinforcement does not exceed 8d_p. Otherwise, boundary elements hall be considered not confined. ¹Be considered not confined. ¹For coupling beams spanning <\$ ft 0in, with bottom reinforcement continuous into the supporting walls, acceptance criteria values shall be permitted to be doubled for LS and CP performance. ¹Conventional longitudinal reinforcement consists of top and bottom steel parallel to the longitudinal axis of the coupling beam. Conforming transverse reinforcement of strength of the oupling beam strength of the outping beam strength of the outping beam strength of the outping beam strength of the coupling beam strength of the outping beam. ¹Conventional longitudinal reinforcement consists of top and bottom steel parallel to the longitudinal axis of the coupling beam. Conforming transverse reinforcement outping beam strength of the outping beam strength of closed stirrups $V_{x} \ge 34$ of required shear strength of the outping beam.

Table 10-20. Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures—R/C Shear Walls and Associated Components Controlled by Shear

							Acceptable Total Drift (%) or Chord Rotation (radians)* Performance Level			
		Total Dri Rol	ft Ratio (%), or tation (radians	r Chord	Strengt	h Ratio				
Conditions		d	e	g	c	+	ю	LS	CP	
i. Shear walls and wall segments ^b										
$\frac{(A_z - A'_z)f_y + P}{t_y l_y f'_c} \le 0.05$		1.0	2.0	0.4	0.20	0.6	0.40	1.5	2.0	
$\frac{(A_t - A'_t)f_y + P}{t_y I_y f'_t} > 0.05$		0.75	1.0	0.4	0.0	0.6	0.40	0.75	1.0	
ii. Shear wall coupling beams ^e										
Longitudinal reinforcement and transverse reinforcement ^d	$\frac{V}{t_{w}l_{w}\sqrt{f_{c}'}}$									
Conventional longitudinal reinforcement with	≤3	0.02	0.030		0.60		0.006	0.020	0.030	
conforming transverse reinforcement	≥6	0.016	0.024		0.30		0.005	0.016	0.024	
Conventional longitudinal reinforcement with	≤3	0.012	0.025		0.40		0.006	0.010	0.020	
nonconforming transverse reinforcement	≥6	0.008	0.014		0.20		0.004	0.007	0.012	

⁴For shear walls and wall segments, use drift; for coupling beams, use chord rotation; refer to Figures 10-5 and 10-6. ⁴For shear walls and wall segments where inelastic behavior is governed by shear, the axial load on the member must be $\leq 0.15A_{e}f_{e}^{\prime}$; otherwise, the member must be treated as a force-controlled component. ⁴Conventional longitudinal reinforcement consists of top and bottom steel parallel to the longitudinal axis of the coupling beam. Conforming transverse rein-forcement consists of (a) closed stirrups over the entire length of the coupling beam at a spacing $\leq d/3$ and (b) strength of closed stirrups $V_{t} \geq 3/4$ of required shear strength of the coupling beam. ⁴For coupling beams, Sening < 810 0.in, with bottom reinforcement continuous into the supporting walls, acceptance criteria values shall be permitted to be doubled for LS and CP performance.

Gráfica de momento rotación de vigas

Gráfica de momento rotación de vigas y columnas

Gráfica de momento rotación de muros estructurales

Resultados final del ingreso de rótulas plásticas

Figura 146

Rótulas plásticas todos los niveles de la estructura

Nota. Las rótulas plásticas en todos los niveles del C.S. Conchopata

Conocer la respuesta de los componentes fuera del rango lineal es necesario para evaluar la respuesta no lineal de la estructura. La respuesta de los componentes debe representarse

mediante curvas que describan dicho comportamiento, con valores obtenidos
mediante evidencia experimental o tomados a partir de las Tablas del ASCE/SEI 4113, estas curvas son conocidas como Relaciones Generalizadas Fuerza-Deformación.
4.2.26 Resultados de las rótulas plásticas del C.S. Conchopata

Figura 147

Respuestas para rótula B454H14

Respuestas para rótula C142H3

4.2.27 Curva de Capacidad

- Definir el modelo matemático de la estructura que incorpore las características fuerza- deformación no lineal de los elementos según las Tablas del ASCE/SEI 41-13.
- Definir el nodo de control, será ubicado en el centro de masa del último nivel del edificio.
- 3. Aplicar el patrón de carga lateral; será proporcional a la forma del modo fundamental de la estructura e incrementada monotónicamente.
- 4. Obtener la curva de capacidad registrando la fuerza de corte basal y el desplazamiento del nodo de control, así como las fuerzas y deformaciones de cada elemento para luego compararlas con sus respectivos diagramas (M θ). Cada incremento de carga lateral es un análisis separado que parte del fin de la última aplicación de carga, por ello a los resultados del último análisis se debe agregar los valores de carga lateral, rotaciones, desplazamientos correspondientes al análisis previo.
- 5. Obtener la curva de capacidad idealizada.

Curva capacidad idealizada (ASCE/SEI 41-13, 2014)

Nota. Imagen de la Curva capacidad idealizada (ASCE/SEI 41-13, 2014)

Curva de capacidad dirección X-X

Figura 150

Cortante vs Monitoreo de desplaz. en la dirección X

	TABLE: Base Shear vs Monitored Displacement											
Step	Monitored Displ	Base Force	A-B	B-C	C-D	D-E	>E	A-10	IO-LS	LS-CP	>CP	Total
	cm	kgf										
0	0	0	776	0	0	0	0	776	0	0	0	776
1	1.6469	744449.21	775	1	0	0	0	776	0	0	0	776
2	2.6879	1151780.13	682	94	0	0	0	775	0	0	1	776
3	2.6892	1145648.13	682	94	0	0	0	775	0	0	1	776
4	3.5524	1378468.71	624	152	0	0	0	775	0	0	1	776
5	3.5526	1358336.29	623	153	0	0	0	774	1	0	1	776
6	3.5543	1354732.49	623	153	0	0	0	774	1	0	1	776
7	3.5634	1355882.71	623	153	0	0	0	773	1	0	2	776
8	3.9057	1438273.82	605	171	0	0	0	773	1	0	2	776
9	3.9071	1430816.74	604	172	0	0	0	773	1	0	2	776
10	4.3345	1517842.01	593	183	0	0	0	773	1	0	2	776
11	4.3369	1506643.96	591	185	0	0	0	773	1	0	2	776
12	4.7914	1593078.36	582	194	0	0	0	772	2	0	2	776
13	4.7915	1581293.51	582	194	0	0	0	772	2	0	2	776
14	4.7988	1583077.77	582	194	0	0	0	772	2	0	2	776
15	5.1754	1651488.88	575	201	0	0	0	771	3	0	2	776
16	5.1760	1643598.55	574	202	0	0	0	769	5	0	2	776

Curva de capacidad dirección Y-Y

Figura 152

Curva de capacidad dirección Y-Y

Cortante vs Monitoreo de desplaz. en la dirección Y

	TABLE: Base Shear vs Monitored Displacement											
Step	Monitored Displ	Base Force	A-B	B-C	C-D	D-E	>E	A-10	IO-LS	LS-CP	>CP	Total
	cm	kgf										
0	0	0	776	0	0	0	0	776	0	0	0	776
1	1.6445	734736.34	775	1	0	0	0	776	0	0	0	776
2	4.8137	1716739.15	543	233	0	0	0	774	0	0	2	776
3	4.8138	1715499.69	543	233	0	0	0	773	0	0	3	776
4	4.8139	1714202.27	543	233	0	0	0	773	0	0	3	776
5	4.814	1714139.37	543	233	0	0	0	773	0	0	3	776
6	7.4468	2286751.98	517	259	0	0	0	758	14	0	4	776
7	7.4468	2270126.12	517	259	0	0	0	757	15	0	4	776
8	7.6494	2316055.03	516	260	0	0	0	754	18	0	4	776
9	7.8519	2328689.93	515	261	0	0	0	753	19	0	4	776
10	11.1933	3000741.14	486	288	2	0	0	683	86	1	6	776

4.2.28 Niveles de Amenaza Sísmica - Espectros de Demanda

La NTE E.030. Para fines de diseño define un espectro inelástico de

pseudoaceleración, que está dado por: Sa = ZUCS/ R^* g

La amenaza sísmica en un lugar determinado está representada por un conjunto de eventos y peligros sísmicos asociados con una cierta probabilidad de ocurrencia. El período de retorno se define como el tiempo promedio entre terremotos de la misma magnitud y severidad. La probabilidad de excedencia es una representación estadística de la probabilidad de que los efectos sísmicos excedan un nivel de impacto determinado durante un tiempo de exposición determinado.

Propuesta del Comité Visión 2000. En función de la probabilidad de superación, propone 4 niveles de peligrosidad sísmica. El período de retorno TR puede relacionarse directamente con una probabilidad de excedencia pe para un número específico t de años, mediante la siguiente ecuación: TR = t /In(1-Pe) Donde:

TR: Periodo de Retorno (años)

t : Tiempo de exposición (años)

Pe : Probabilidad de Excedencia

Propuesta del ATC-40. Define 3 niveles de amenaza sísmica para el diseño de estructuras, que se describen a continuación. Las siglas S, D y M hacen referencia respectivamente a Servicio, Diseño y Máximo, mientras que E, conserva la inicial de la palabra inglesa "Earthquake".

a. Sismo Frecuente o de Servicio (SE): Está definido como el sismo que tiene un 50% de probabilidad de ser excedido en un periodo de 50 años. Este nivel de amenaza sísmica es típicamente alrededor de 0.5 veces el nivel del Sismo de Diseño. Tiene un periodo de retorno aproximado de 75 años. Corresponde al sismo ocasional.

b. Sismo de Diseño (DE): Está definido como el sismo que tiene un 10% de probabilidad de ser excedido en un periodo de 50 años. Tiene un período de retorno de aproximado de 500 años. Es el que generalmente establecen los códigos para el diseño de estructuras convencionales. Corresponde al sismo raro.

c. Sismo Máximo (ME): Está definido como el sismo que tiene un 5% de probabilidad de ser excedido en un periodo de 50 años. Este nivel de amenaza sísmica es típicamente alrededor de 1.25 a 1.5 veces el nivel del Sismo de Diseño. Tiene un periodo de retorno aproximado de 1000 años. Es utilizado para el diseño de estructuras esenciales. Corresponde al sismo muy raro.

Niveles de amenaza sísmica según el ASCE/SEI 41-13. Este estándar establece 5 niveles de peligro sísmico que se utilizan para determinar los diferentes tipos de objetivos de desempeño.

a. Sismo con una probabilidad de excedencia de 50% en 50 años con un periodo de retorno medio de 72 años. Es el equivalente al sismo ocasional.

b. BSE-1E: Sismo con una probabilidad de excedencia de 20% en 50 años con un periodo de retorno medio de 225 años. No necesita ser mayor que el sismo BSE-IN.
c. BSE-2E: Sismo con una probabilidad de excedencia de 5% en 50 años con un periodo de retorno medio de 975 años. No necesita ser mayor que el sismo BSE-2N.

d. BSE-IN: Corresponde a 2/3 del BSE-2N. Representa el sismo de diseño definido en el ASCE 7. Es un sismo con una probabilidad de excedencia de 10% en 50 años con un periodo de retorno medio de 475 años. Es el equivalente al sismo raro.
e. BSE-2N: Corresponde al MCER (Sismo considerado de riesgo máximo) que es igual a 1.5 veces el sismo de diseño definido por la sección 11.4 del estándar ASCE 7-16. Se puede considerar que corresponde a un sismo con una probabilidad de excedencia de 2% en 50 años, con un periodo de retorno medio de 2475 años.

Figura 154

Nivel de amenaza sísmica según Visión 2000

					Sa-R	- Vision	2000							
			1			1	1							
DATOS	EACT	ORES							DAT	ros	DIR	X-X		V-V
7	0.	25							R	0	8.	00	8.	.00
Ū	1.	50							i i	a	1.	00	1.	.00
S	1.	20							l I	p	1.	00	1.	.00
TP	0.	60							F	2	8.	00	8.	.00
TL	2.	00												
		04						VISIO	N 2000			-		
g	9.	81		FRE		0-0			0-0	RARO	0-	N 0-1		0
T	6	60	So/P	Sale	J.33 Sa	5a2 =	522	Sal	5a3=	1.00	Sa	584=	1.30	Sa
0.000	2,500	1.125	0.141	0	3750		0.5250			1,1250			1.4625	
0.050	2.500	1.125	0.141	0	.3750		0.5250			1.1250			1.4625	
0.100	2.500	1.125	0.141	0	.3750		0.5250			1.1250			1.4625	
0.150	2.500	1.125	0.141	0	.3750		0.5250			1.1250			1.4625	
0.200	2.500	1.125	0.141	0	.3750		0.5250			1.1250			1.4625	
0.250	2.500	1.125	0.141	0	.3750		0.5250			1.1250			1.4625	
0.300	2.500	1.125	0.141	0	3750	-	0.5250			1.1250			1.4625	
0.400	2.500	1.120	0.141	0	3750	+	0.5250			1 1250			1 4625	
0.450	2.500	1.125	0.141	0	.3750	1	0.5250			1.1250			1.4625	
0.500	2.500	1.125	0.141	0	.3750	1	0.5250			1.1250			1.4625	
0.550	2.500	1.125	0.141	0	.3750		0.5250			1.1250			1.4625	
0.600	2.500	1.125	0.141	0	.3750		0.5250			1.1250			1.4625	
0.650	2.308	1.038	0.130	0	.3462		0.4846			1.0385			1.3500	
0.700	2.143	0.964	0.121	0	.3214		0.4500			0.9643			1.2536	
0.750	2.000	0.900	0.115	0	2912		0.4200			0.9000			1.1700	
0.850	1.765	0.794	0.099	0	2647		0.3706			0.7941			1.0324	
0.900	1.667	0.750	0.094	0	.2500		0.3500			0.7500			0.9750	
0.950	1.579	0.711	0.089	0	.2368		0.3316			0.7105			0.9237	
1.000	1.500	0.675	0.084	0	.2250		0.3150			0.6750			0.8775	
1.050	1.429	0.643	0.080	0	.2143		0.3000			0.6429			0.8357	
1.100	1.364	0.614	0.077	0	.2045		0.2864			0.6136			0.7977	
1.150	1.304	0.567	0.073	0	1957		0.2739			0.5670			0.7630	
1.250	1.200	0.540	0.068	0	1800		0.2520			0.5400			0.7020	
1.300	1.154	0.519	0.065	0	.1731		0.2423			0.5192			0.6750	
1.350	1.111	0.500	0.063	0	.1667		0.2333			0.5000			0.6500	
1.400	1.071	0.482	0.060	0	.1607		0.2250			0.4821			0.6268	
1.450	1.034	0.466	0.058	0	.1552		0.2172			0.4655			0.6052	
1.500	1.000	0.450	0.056	0	.1500		0.2100			0.4500			0.5850	
1.550	0.968	0.435	0.054	0	1452	-	0.2032			0.4355			0.5661	
1.650	0.909	0.409	0.055	0	.1364	1	0.1909			0.4091			0.5318	
1.700	0.882	0.397	0.050	Ő	.1324		0.1853			0.3971			0.5162	
1.750	0.857	0.386	0.048	0	.1286		0.1800			0.3857			0.5014	
1.800	0.833	0.375	0.047	0	.1250		0.1750			0.3750			0.4875	
1.850	0.811	0.365	0.046	0	.1216		0.1703			0.3649			0.4743	
1.900	0.789	0.355	0.044	0	.1184		0.1658			0.3553			0.4618	
2 000	0.769	0.346	0.043	0	1125	-	0.1615			0.3462			0.4500	
2.500	0.480	0.216	0.042	0	.0720	1	0.1008			0.2160			0.2808	
3.000	0.333	0.150	0.019	0	.0500	1	0.0700			0.1500			0.1950	
3.500	0.245	0.110	0.014	0	.0367		0.0514			0.1102			0.1433	
4.000	0.188	0.084	0.011	0	.0281		0.0394			0.0844			0.1097	
5.000	0.120	0.054	0.007	0	.0180		0.0252			0.0540			0.0702	
6.000	0.083	0.038	0.005	0	.0125	-	0.0175			0.0375			0.0488	
7.000	0.061	0.028	0.003	0	.0092		0.0129			0.0276			0.0358	
8.000	0.047	0.021	0.003	0	.0070		0.0098			0.0211			0.0274	
9.000	0.037	0.017	0.002	0	.0056		0.0078			0.0167			0.0217	
10.000	0.030	0.014	0.002	0	.0045	1	0.0063		1	0.0135			0.0176	

Nivel de amenaza sísmica según ASCE-SEI 41-13

				Sa-R	ASCE-SEI 41-13			
DATOS	FACT	ORES				DATOS		
7		25				BO RO	8.00	8.00
<u> </u>	1	50				la	1.00	1.00
S	1.	20					1.00	1.00
TP	0.	60				R	8.00	8.00
Τι	2.	00						
					ASCE-S	EI 41-13		
g	9.	81		FRECUENTE	OCACIONAL	RARO		MUY RARO
				Sa1= 0.33 Sa	Sa2 = 1.40 Sa1	Sa3= 1.00	Sa Sa	a4= 1.30 Sa
Т	С	Sa	Sa/R	Sa 1	Sa 2	Sa 3		Sa 4
0.000	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4625
0.050	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4625
0.100	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4625
0.150	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4625
0.200	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4625
0.250	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4020
0.350	2.500	1,125	0.141	0.3750	0.5250	1 1250		1.4625
0.400	2.500	1,125	0.141	0.3750	0.5250	1.1250		1.4625
0.450	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4625
0.500	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4625
0.550	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4625
0.600	2.500	1.125	0.141	0.3750	0.5250	1.1250		1.4625
0.650	2.308	1.038	0.130	0.3462	0.4846	1.0385		1.3500
0.700	2.143	0.964	0.121	0.3214	0.4500	0.9643		1.2536
0.750	2.000	0.900	0.113	0.3000	0.4200	0.9000		1.1700
0.800	1.875	0.844	0.105	0.2813	0.3938	0.8438		1.0969
0.850	1.765	0.794	0.099	0.2647	0.3706	0.7941		1.0324
0.900	1.007	0.750	0.094	0.2500	0.3316	0.7500		0.9750
1 000	1.579	0.711	0.089	0.2300	0.3150	0.7103		0.9237
1.050	1.429	0.643	0.080	0.2143	0.3000	0.6429		0.8357
1.100	1.364	0.614	0.077	0.2045	0.2864	0.6136		0.7977
1.150	1.304	0.587	0.073	0.1957	0.2739	0.5870		0.7630
1.200	1.250	0.563	0.070	0.1875	0.2625	0.5625		0.7313
1.250	1.200	0.540	0.068	0.1800	0.2520	0.5400		0.7020
1.300	1.154	0.519	0.065	0.1731	0.2423	0.5192		0.6750
1.350	1.111	0.500	0.063	0.1667	0.2333	0.5000		0.6500
1.400	1.071	0.482	0.060	0.1607	0.2250	0.4821		0.6268
1.450	1.034	0.466	0.058	0.1552	0.2172	0.4655		0.6052
1.500	0.968	0.430	0.050	0.1300	0.2100	0.4300		0.5661
1,600	0.938	0.422	0.053	0.1406	0.1969	0.4219		0.5484
1.650	0.909	0.409	0.051	0.1364	0.1909	0.4091		0.5318
1.700	0.882	0.397	0.050	0.1324	0.1853	0.3971		0.5162
1.750	0.857	0.386	0.048	0.1286	0.1800	0.3857		0.5014
1.800	0.833	0.375	0.047	0.1250	0.1750	0.3750		0.4875
1.850	0.811	0.365	0.046	0.1216	0.1703	0.3649		0.4743
1.900	0.789	0.355	0.044	0.1184	0.1658	0.3553		0.4618
1.950	0.769	0.346	0.043	0.1154	0.1615	0.3462		0.4500
2.000	0.750	0.338	0.042	0.1125	0.1575	0.3375		0.4388
2.500	0.480	0.216	0.027	0.0720	0.1008	0.2160		0.2808
3.000	0.333	0.150	0.019	0.0000	0.0700	0.1500		0.1950
4 000	0.245	0.084	0.014	0.0307	0.0314	0.1102		0.1433
5.000	0,120	0.054	0,007	0.0180	0.0252	0.0540		0.0702
6.000	0.083	0.038	0.005	0.0125	0.0175	0.0375		0.0488
7.000	0.061	0.028	0.003	0.0092	0.0129	0.0276		0.0358
8,000	0.047	0.021	0.003	0.0070	0.0098	0 0211		0.0274
9,000	0.037	0.017	0.002	0.0056	0.0078	0.0167		0.0217
10,000	0.037	0.017	0.002	0.0045	0.0000	0.0107		0.0217

Nivel de amenaza sísmica según ATC-40

	Sa-R - ATC 40								
	2.403				0.4707		-		
ATOS	PML 0	luida			UAIUS	S 00	~	2.00	
fi -	1	50			n0	1.00		1.00	
š	1	20			lo lo	1.00	\rightarrow	1.00	
TP	0	80			Ř	8.00		8.00	
Ť.	2	00							
					ATC 40				
8	9.	81)	SERVICIO	DISENO			MAXIMO	
				Sa1= 0.33 Sa	Sa2 = 1.40	Sa1	Sa3-	1.25	Sa
т	C	Sa	S/R	Sal	Sa 2			Sa 3	
1000	2.500	1.125	0.141	0.3750	0.5250			1.4083	
1050	2.500	1.125	0.141	0.3750	0.5250			1.4083	
1100	2.500	1.125	0.141	0.3/50	0.5250			1.4083	
1.150	2.500	1.125	0.141	0.3/50	0.5250			1.4083	
1250	2.500	1.125	0.141	0.3250	0.5250			1.4083	
1300	2,500	1,125	0.141	0.3750	0.5250			1.4083	
1350	2.500	1.125	0.141	0.3/50	0.5250			1.4083	
1400	2.500	1.125	0.141	0.3/50	0.5250			1.4083	_
1450	2.500	1.125	0.141	0.3750	0.5250			1.4083	
1500	2.500	1.125	0.141	0.3/50	0.5250			1.4083	
1550	2.500	1.125	0.141	0.3750	0.5250			1.4083	
1800	2.500	1.125	0.141	0.3/50	0.5250			1.4083	
1 /010	2.308	1.038	0.130	0.3462	0.4346			1.2981	
1750	2.000	0.900	0.113	0.3000	0.4200			1.1250	
1.800	1.875	0.844	0.105	0.2813	0.3938			1.0547	
1850	1.765	0.694	0.099	0.2847	0.3708			0.9928	
1900	1.887	0.750	0.094	0.2500	0.3500			0.93/5	
1950	1.579	0.711	0.089	0.2988	0.3316			0.8882	
.000	1.500	0.875	0.084	0.2250	03150			0.8438	
1.050	1.429	0.843	0.080	0.2143	0.3000			0.8036	
1.100	1.364	0.614	0.077	0.2045	0.2884			0.7670	
200	1.309	0.307	0.073	0.1957	02/39			0.7337	
1250	1.200	0.540	0.068	0.1800	0.2520			0.6750	
1.300	1.154	0.519	0.085	0.1731	0.2423			0.6490	
1.350	1.111	0.500	0.063	0.1887	0.2333			0.8250	
.400	1.071	0.482	0.060	0.1807	0.2250			0.8027	
1.450	1.034	0.488	0.058	0.1552	0.2172			0.5819	
1.500	1.000	0.450	0.058	0.1500	0.2100			1565	
1.550	0.968	0.435	0.054	0.1452	0.2032			0.5444	
1.600	82.010	0.422	0.053	0.1406	0.1989			0.52/3	
700	0.882	0.409	0.050	0.1364	0.1853			0.4983	
1.750	0.857	0.386	0.048	0.1288	0.1800			0.4821	
1.800	0.833	0.375	0.047	0.1250	0.1750			0.4688	
1.850	0.811	0.385	0.048	0.1216	0.1703			0.4561	
.900	0.789	0.355	0.044	0.1184	0.1658			0.4441	
1.950	0.769	0.346	0.043	0.1154	0.1615			0.4327	
2000	0.750	0.2238	0.042	0.1125	0.1575			0.4219	
2.500	0.480	0.216	0.027	0.0/20	0.1008			0.1925	
1.000	0.245	0.150	0.019	0.0500	0010.0			0.1322	
1000	0.188	0.084	0.014	0.0281	0.0514			0.1065	
5.000	0.120	0.054	0.007	0.0180	0.0252			0.0675	
1.00.0	0.083	0.038	0.005	0.0125	0.0175			0.0489	
000.1	0.061	0.028	0.003	0.0092	0.0129			0.0344	_
1.000	0.047	0.021	0.003	0100.0	8200.0			0.0284	
2 00 0	0.037	0.017	0.002	0.0058	0.0078			0.0208	
0.000	0.030	0.014	0.002	0.0045	2,900.0		0.0189		

Espectro de demanda visión 2000

Figura 157

Espectr. de demanda Visión 2000

Espectro de demanda ATC-40

Figura 158

Espectr. de demanda ATC-40

Espectro de demanda ASCE-SEI 41-13

Figura 159

Espectr. de demanda ASCE-SEI-41-13

4.2.29 Curva de potencia en espectro de potencia

Convertir la curva de potencia en espectro de potencia. El espectro de potencia es una representación de la potencia en formato ADRS (Sa-Sa). Las ecuaciones necesarias para hacer dicha conversión, propuestas en el ATC-40, son:

$$PF_{1} = \begin{bmatrix} \frac{\sum_{i=1}^{N} \frac{(w_{i} \phi_{i1})}{g}}{\sum_{i=1}^{N} \frac{(w_{i} \phi_{i1}^{2})}{g}} \end{bmatrix} \qquad \qquad \alpha_{1} = \frac{\begin{bmatrix} \sum_{i=1}^{N} \frac{(w_{i} \phi_{i1})}{g} \end{bmatrix}^{2}}{\begin{bmatrix} \sum_{i=1}^{N} \frac{(w_{i} \phi_{i1}^{2})}{g} \end{bmatrix}}$$
$$S_{a} = \frac{V/W}{\alpha_{1}} \qquad \qquad S_{d} = \frac{\Delta_{roof}}{PF_{1}\phi_{roof,1}}$$

Donde:

PF1: Factor de participación modal para el modo predominante (modo 1).

α1: Coeficiente de masa modal para el modo predominante (modo 1).

wi/g: Masa asignada al nivel i.

Øi1: Amplitud del modo predominante (modo 1) en el nivel i.

N: Nivel N, el nivel más alto en la parte principal de la estructura.

V: Cortante basal.

W: Peso muerto de la estructura más la probable carga viva (Peso sísmico).

 Δ roof: Desplazamiento del techo.

Sa: Aceleración espectral.

Sd: Desplazamiento espectral.

Figura 160

Nota. Imagen de la Conversión Curva de capacidad a formato ADRS-ATC-40

Gráfica cortante vs desplazamiento-dirección X-ETABS

Figura 162

Gráfica formato ADRS (Sa-Sd) en la dirección X de ETABS

Gráfica Cortante-Desplazamiento en la dirección Y de ETABS

Figura 164

Gráfica formato ADRS (Sa-Sd) en la dirección Y de ETABS

Para cualquier punto en el espectro ADRS, el periodo T, puede ser calculado utilizando la siguiente relación:

$$T = 2\pi \sqrt{\frac{S_d}{S_a}}$$

Espectro de capacidad dirección X-X

Figura 165

Espectro curva capacidad dirección X

DIRECCIÓN X-X								
Sa	Sd							
cm	cm							
0	0							
1.4311	0.728284							
2.3441	1.135267							
3.0466	1.367097							
3.2971	1.419848							
3.6306	1.49443							
3.9832	1.560378							
4.2799	1.610648							

Espectro de capacidad dirección Y-Y

Figura 166

Espectro curva capacidad dirección Y

DIRECCIÓN Y-Y								
Sa	Sd							
cm	cm							
0	0							
1.4205	0.666174							
4.0583	1.531639							
4.0591	1.530349							
4.0599	1.528996							
4.06	1.52892							
6.212	2.020606							
6.2165	2.003105							

La NTE E.030 para fines de diseño define un espectro inelástico de pseudoaceleración, que está dado por:

$$S_a = \frac{ZUCS}{R} \cdot g$$

Para la evaluación del desempeño sísmico, los espectros de respuesta se adoptan en el formato ADRS ("Acceleration-Displacement Response Spectrum", Sa vs. Sa), utilizando principalmente la aceleración espectral en el eje de ordenadas y el desplazamiento espectral en el eje de abscisas. Para convertir el espectro de pseudoaceleración al formato ADRS, se debe calcular el valor de Sai para cada punto de la curva Sai, Tj utilizando la siguiente fórmula:

$$S_{di} = \frac{T_i^2}{4\pi^2} \cdot S_{ai} \cdot g$$

Figura 167

Conversión del Espectr. Rta a formato ADRS, ATC-40

Nota. Imagen de la Conversión del Espectr.Rta a formato ADRS, ATC-40

4.2.30 Respuesta Elástica de Estructuras

El método del espectro de potencia utiliza el espectro de potencia y el espectro de demanda en formato ADRS. Si se espera que la respuesta estructural ocurra en la región elástica, el punto de desempeño (dp, ap) se puede obtener interpolando directamente el espectro de demanda y el espectro de potencia, como se muestra en la Figura 168.

Figura 168

Rpta elástica de estructuras

Nota. Imagen que representa la respuesta elástica de estructuras en formato ADRS

4.2.31 Respuesta Inelástica de Estructuras

Se prevé que, en caso de sismos de mayor magnitud, el edificio ingrese al rango inelástico, creando rótulas plásticas por las cuales se libera energía. Las características dinámicas del edificio, como la masa, la rigidez y el amortiguamiento, determinan la demanda sísmica; al ingresar al régimen inelástico, la rigidez cambia. El espectro de demanda calculado para una estructura que exhibe un comportamiento elástico se denomina espectro de respuesta elástica.

El ATC-40 indica que se puede representar el comportamiento inelástico de una estructura mediante un amortiguamiento viscoso equivalente, el cual depende del nivel de desplazamiento inelástico alcanzado. Un nuevo espectro de demanda y un amortiguamiento viscoso equivalente se pueden obtener para cada pto del tramo inelástico de la Curva de Capacidad. Para lograr el pto de desempeño en el rango inelástico (respuesta inelástica), la Figura 169 muestra la disminución del espectro de respuesta elástico.

Figura 169

Rpta inelástica de Estructuras, ATC-40

Nota. Imagen que representa la respuesta inelástica de Estructuras, ATC-40
Espectros de demanda Visión 2000

				E	SPECTROS	DE DEMAND	A				
					VISIO	N 2000					
F	RECUENT	E	C	DCACIONA	L		RARO			MUY RARC)
т	Sa 1	Sd	т	Sa 2	Sd	т	Sa 3	Sd	т	Sa 4	Sd
0.0000	0.3750	0.0000	0.0000	0.5250	0.0000	0.0000	1.1250	0.0000	0.0000	1.4625	0.00000
0.0500	0.3750	0.0000	0.0500	0.5250	0.0000	0.0500	1.1250	0.0001	0.0500	1.4625	0.00009
0.1000	0.3750	0.0001	0.1000	0.5250	0.0001	0.1000	1.1250	0.0003	0.1000	1.4625	0.00037
0.1500	0.3750	0.0002	0.1500	0.5250	0.0003	0.1500	1.1250	0.0006	0.1500	1.4625	0.00083
0.2000	0.3750	0.0004	0.2000	0.5250	0.0005	0.2000	1.1250	0.0011	0.2000	1.4625	0.00148
0.2500	0.3750	0.0006	0.2500	0.5250	0.0008	0.2500	1.1250	0.0018	0.2500	1.4625	0.00232
0.3000	0.3750	0.0009	0.3000	0.5250	0.0012	0.3000	1.1250	0.0026	0.3000	1.4625	0.00333
0.3500	0.3750	0.0012	0.3500	0.5250	0.0016	0.3500	1.1250	0.0035	0.3500	1.4625	0.00454
0.4000	0.3750	0.0015	0.4000	0.5250	0.0021	0.4000	1.1250	0.0040	0.4000	1.4020	0.00595
0.4300	0.3750	0.0019	0.4300	0.5250	0.0027	0.4500	1.1250	0.0030	0.4300	1.4025	0.00730
0.5000	0.3750	0.0024	0.5000	0.5250	0.0033	0.5500	1 1 1 2 5 0	0.0071	0.5000	1.4625	0.00320
0.6000	0.3750	0.0020	0.6000	0.5250	0.0048	0.6000	1 1 1 2 5 0	0.0000	0.6000	1.4625	0.01334
0.6500	0.3462	0.0037	0.6500	0.4846	0.0052	0.6500	1.0385	0.0111	0.6500	1.3500	0.01445
0.7000	0.3214	0.0040	0.7000	0.4500	0.0056	0.7000	0.9643	0.0120	0.7000	1.2536	0.01556
0.7500	0.3000	0.0043	0.7500	0.4200	0.0060	0.7500	0.9000	0.0128	0.7500	1.1700	0.01667
0.8000	0.2813	0.0046	0.8000	0.3938	0.0064	0.8000	0.8438	0.0137	0.8000	1.0969	0.01778
0.8500	0.2647	0.0048	0.8500	0.3706	0.0068	0.8500	0.7941	0.0145	0.8500	1.0324	0.01889
0.9000	0.2500	0.0051	0.9000	0.3500	0.0072	0.9000	0.7500	0.0154	0.9000	0.9750	0.02000
0.9500	0.2368	0.0054	0.9500	0.3316	0.0076	0.9500	0.7105	0.0162	0.9500	0.9237	0.02112
1.0000	0.2250	0.0057	1.0000	0.3150	0.0080	1.0000	0.6750	0.0171	1.0000	0.8775	0.02223
1.0500	0.2143	0.0060	1.0500	0.3000	0.0084	1.0500	0.6429	0.0180	1.0500	0.8357	0.02334
1.1000	0.2045	0.0063	1.1000	0.2864	0.0088	1.1000	0.6136	0.0188	1.1000	0.7977	0.02445
1.1500	0.1957	0.0066	1.1500	0.2739	0.0092	1.1500	0.5870	0.0197	1.1500	0.7630	0.02556
1.2000	0.1875	0.0068	1.2000	0.2625	0.0096	1.2000	0.5625	0.0205	1.2000	0.7313	0.02667
1.2500	0.1800	0.0071	1.2500	0.2520	0.0100	1.2500	0.5400	0.0214	1.2500	0.7020	0.02778
1.3000	0.1731	0.0074	1.3000	0.2423	0.0104	1.3000	0.5192	0.0222	1.3000	0.6750	0.02690
1.3500	0.1607	0.0077	1.3000	0.2355	0.0100	1.3000	0.5000	0.0231	1.3000	0.0000	0.03001
1.4000	0.1007	0.0000	1.4000	0.2230	0.0112	1.4000	0.4655	0.0233	1.4000	0.0200	0.03772
1 5000	0.1502	0.0005	1.4300	0.2172	0.0120	1.45000	0.4500	0.0240	1.4300	0.5850	0.03223
1.5500	0.1452	0.0088	1.5500	0.2032	0.0124	1.5500	0.4355	0.0265	1.5500	0.5661	0.03445
1.6000	0.1406	0.0091	1.6000	0.1969	0.0128	1.6000	0.4219	0.0274	1.6000	0.5484	0.03556
1.6500	0.1364	0.0094	1.6500	0.1909	0.0132	1.6500	0.4091	0.0282	1.6500	0.5318	0.03668
1.7000	0.1324	0.0097	1.7000	0.1853	0.0136	1.7000	0.3971	0.0291	1.7000	0.5162	0.03779
1.7500	0.1286	0.0100	1.7500	0.1800	0.0140	1.7500	0.3857	0.0299	1.7500	0.5014	0.03890
1.8000	0.1250	0.0103	1.8000	0.1750	0.0144	1.8000	0.3750	0.0308	1.8000	0.4875	0.04001
1.8500	0.1216	0.0105	1.8500	0.1703	0.0148	1.8500	0.3649	0.0316	1.8500	0.4743	0.04112
1.9000	0.1184	0.0108	1.9000	0.1658	0.0152	1.9000	0.3553	0.0325	1.9000	0.4618	0.04223
1.9500	0.1154	0.0111	1.9500	0.1615	0.0156	1.9500	0.3462	0.0333	1.9500	0.4500	0.04334
2.0000	0.1125	0.0114	2.0000	0.1575	0.0160	2.0000	0.3375	0.0342	2.0000	0.4388	0.04445
2.5000	0.0720	0.0114	2.5000	0.1008	0.0160	2.5000	0.2160	0.0342	2.5000	0.2808	0.04445
3.0000	0.0500	0.0114	3.0000	0.0700	0.0160	3.0000	0.1500	0.0342	3.0000	0.1950	0.04445
3.5000	0.0307	0.0114	3.5000	0.0014	0.0160	3.5000	0.1102	0.0342	3.5000	0.1433	0.04445
5 0000	0.0201	0.0114	5.0000	0.0394	0.0100	5.0000	0.0644	0.0342	5.0000	0.1097	0.04445
6 0000	0.0125	0.0114	6,0000	0.0232	0.0160	6.0000	0.0375	0.0342	6.0000	0.0488	0.04445
7 0000	0.0092	0.0114	7 0000	0.0129	0.0160	7 0000	0.0276	0.0342	7 0000	0.0358	0 04445
8.0000	0.0070	0.0114	8.0000	0.0098	0.0160	8.0000	0.0211	0.0342	8.0000	0.0274	0.04445
9.0000	0.0056	0.0114	9.0000	0.0078	0.0160	9.0000	0.0167	0.0342	9.0000	0.0217	0.04445
10.0000	0.0045	0.0114	10.0000	0.0063	0.0160	10.0000	0.0135	0.0342	10.0000	0.0176	0.04445

Gráficas de espectros de demanda Visión 2000

4.2.32 Punto de desempeño

El punto de desempeño es el cálculo del desplazamiento máximo esperado del techo del edificio calculado para el sismo de diseño. De este modo se puede caracterizar el tipo de daño estructural respectivo y compararlo con los indicadores de rendimiento requeridos. Esto permite identificar deficiencias en todas las partes del edificio y, si es necesario, eliminarlas directamente realizando acciones correctivas. El programa dinámico no lineal (NDP) o el análisis de historia del tiempo (ATH) pueden evaluar con mayor precisión el comportamiento no lineal de un edificio, pero su uso no es práctico. Además, también se han desarrollado métodos de análisis no lineales simplificados llamados procesos estáticos no lineales (NSP), como el análisis pushover. Se define como ejemplo en figura a p como el "Punto de Desempeño Estructural", resultante de la intersección entre la curva de "Demanda Inelástica" y la curva de "Capacidad Estructural "obtenida mediante un ensayo Pushover.

Figura 172

Punto de Desempeño Estructural

Nota. Punto de desempeño estructural sometido a un espectro inelástico.

Existen varios métodos para determinar los puntos de desempeño utilizando los resultados del análisis pushover.

Método del Espectro de Capacidad. Una curva de capacidad se define como la relación que existe entre la resistencia a la carga lateral de una estructura y su desplazamiento lateral característico. Típicamente se obtiene por medio de un análisis estático no lineal, conocido en la literatura inglesa como análisis pushover. Los sistemas elásticos de un solo grado de libertad utilizados para estimar el desplazamiento inelástico máximo de un sistema no lineal a menudo se denominan sistemas equivalentes o sistemas sustitutos. De manera similar, el período de vibración y el amortiguamiento del sistema elástico se denominan período equivalente y amortiguación equivalente, respectivamente, partiendo de este principio. Este método genera primero la curva de potencia (Pushover) de la estructura.

Luego, los resultados se convierten al formato **ADRS** utilizando las capacidades dinámicas del sistema. Los requisitos sísmicos también deberían convertirse al mismo formato. El período se puede representar como una línea radial que parte del origen. Este método supone que la atenuación equivalente del sistema es proporcional al área cubierta por el espectro de potencia y supone que el período equivalente es el período secante donde la demanda sísmica cruza el espectro de potencia. Dado que el período y el amortiguamiento equivalente son funciones del desplazamiento, la solución para determinar el desplazamiento inelástico máximo es iterativa (punto de fluencia).

Procedimiento propuesto en el FEMA 440. Evalúa el método propuesto por ATC-40 y propone un procedimiento de linealización equivalente mejorado. El objetivo es estimar la respuesta de desplazamiento máximo de un sistema no lineal con un sistema lineal "equivalente" utilizando el período efectivo **Teff** y el amortiguamiento efectivo **Beff**. Estos parámetros son funciones de las características de la curva de potencia, la amortiguación periódica e inicial del sistema y el requisito de flexibilidad μ. El procedimiento es similar al propuesto para ATC-40. (FEMA 440) Capítulo 6 proporciona 3 procedimientos (A, B y C) para determinar los puntos de desempeño. Parámetros de linealización equivalentes básicos Los parámetros de linealización equivalentes óptimos (**Teff y Beff**) se determinan mediante análisis estadístico que minimiza estrictamente la diferencia entre la respuesta máxima inelástica real del sistema y los casos extremos de sus equivalentes lineales correspondientes (es decir, errores).

Estos parámetros son:

a. Amortiguamiento efectivo: Para todo tipo de modelos histeréticos, el valor del amortiguamiento viscoso efectivo es función de la elasticidad total μ de la estructura

expresada como porcentaje del amortiguamiento crítico, y el valor de a viene dado por la siguiente fórmula:

Para 1.0 <
$$\mu$$
 < 4.0:
 $\beta_{eff} = A(\mu - 1)^2 + B(\mu - 1)^3 + \beta_0$
Para 4.0 $\leq \mu \leq 6.5$:
 $\beta_{eff} = C + D(\mu - 1) + \beta_0$
Para $\mu > 6.5$:
 $\beta_{eff} = E \left[\frac{F(\mu - 1) - 1}{[F(\mu - 1) - 1]^2} \right] \left(\frac{T_{eff}}{T_0} \right)^2 + \beta_0$

Los valores de los factores A, B, C, D, E y F se dan en la Tabla 6-1 del FEMA 440. Tipo de valor:

Para 1.0 <
$$\mu$$
 < 4.0:
Para 4.0 ≤ μ ≤ 6.5:
 $\beta_{eff} = 4.9(\mu - 1)^2 - 1.1(\mu - 1)^3 + \beta_0$
 $\beta_{eff} = 14.0 + 0.32(\mu - 1) + \beta_0$
Para μ > 6.5:
 $\beta_{eff} = 19 \left[\frac{0.64(\mu - 1) - 1}{[0.64(\mu - 1) - 1]^2} \right] \left(\frac{T_{eff}}{T_0} \right)^2 + \beta_0$

b. Período efectivo: El valor del período efectivo y el valor para todos los tipos de modelos de histéresis se calculan utilizando la siguiente expresión:

$$\begin{array}{ll} \text{Para } 1.0 < \mu < 4.0; & T_{eff} = [G(\mu - 1)^2 + H(\mu - 1)^3 + 1]T_0 \\ \text{Para } 4.0 \le \mu \le 6.5; & T_{eff} = [I + J(\mu - 1) + 1]T_0 \\ \text{Para } \mu > 6.5; & T_{eff} = \left\{ K \left[\sqrt{\frac{(\mu - 1)}{1 + L(\mu - 2)}} - 1 \right] + 1 \right\} T_0 \end{array}$$

La Tabla 6-2 del FEMA 440 Contiene los valores de los coeficientes G, H, I, J y K y L.

$$\begin{array}{ll} \text{Para } 1.0 < \mu < 4.0; & T_{eff} = [0.20(\mu - 1)^2 - 0.038(\mu - 1)^3 + 1]T_0 \\ \text{Para } 4.0 \leq \mu \leq 6.5; & T_{eff} = [0.28 + 0.13(\mu - 1) + 1]T_0 \\ \text{Para } \mu > 6.5; & T_{eff} = \left\{ 0.89 \left[\sqrt{\frac{(\mu - 1)}{1 + 0.05(\mu - 2)}} - 1 \right] + 1 \right\} T_0 \end{array}$$

c. Espectro de Respuesta Aceleración-Desplazamiento Modificado (MADRS)

para uso con Periodos Secantes. Al utilizar las ecuaciones de periodo y amortiguamiento efectivo, se obtiene un desplazamiento máximo que coincide con la intersección de una línea radial del periodo efectivo en la demanda en formato ADRS para el amortiguamiento efectivo, como se muestra en la Figura 160. El periodo efectivo Teff a partir del procedimiento mejorado, generalmente es más corto que el periodo secante Tsec definido en el punto de la curva de capacidad correspondiente al desplazamiento máximo dmáx. La aceleración deff no es significativa ya que la máxima aceleración real amáx debe estar sobre la curva de capacidad y coincidir con el desplazamiento máximo dmáx..Al multiplicar las ordenadas de la demanda con amortiguamiento efectivo ßeff por el factor de modificación M (en formato ADRS), obtenemos la **curva de demanda ADRS modificada (MADRS)**, la cual interseca la curva de capacidad en el punto de desempeño. El factor de modificación se calcula como:

$$M = \frac{a_{max}}{a_{eff}}$$

Dado que el valor de la aceleración está directamente relacionado con el período en cuestión, M se puede calcular de la siguiente manera:

$$M = \left(\frac{T_{eff}}{T_{sec}}\right)^2 = \left(\frac{T_{eff}}{T_0}\right)^2 \left(\frac{T_0}{T_{sec}}\right)^2$$

Donde:

$$\left(\frac{T_0}{T_{sec}}\right)^2 = \frac{1+\alpha(\mu-1)}{\mu}$$

Figura 173

Espectr. Rta modificado MADRS con Tsec, FEMA 440

Nota. Imagen que representa el Espectro de Respuesta modificado MADRS con Tsec, FEMA 440.

Suprime eficazmente la decadencia espectral de **Beff**. Un procedimiento de linealización equivalente requiere el uso de factores de reducción espectral para ajustar el espectro de respuesta original a un nivel apropiado de atenuación efectiva **Beff**. Estos factores son funciones del factor de amortiguamiento efectivo B:

$$(S_a)_\beta = \frac{(S_a)_0}{B(\beta_{eff})}$$

Actualmente existen varias opciones de procedimientos para detectar B. Sin embargo, se recomienda utilizar las siguientes expresiones:

$$B = \frac{4}{5.6 - ln\beta_{eff}(en\,\%)}$$

Procedimiento A del Método del Espectro de Capacidad según el FEMA 440. Dado que Beff y Teff están en función de μ, el cálculo del máximo desplazamiento utilizando la linealización equivalente no es directo y requiere un procedimiento de solución gráfico o iterativo. A continuación, se detalla el Procedimiento A, o de Iteración Directa. En este procedimiento, la iteración se realiza para converger directamente al punto de desempeño. Los espectros de demanda **ADRS** generados para los diversos valores de **Beff** NO se modifican para interceptar el espectro de capacidad.

 Seleccionar un espectro de demanda sísmica de interés con un amortiguamiento inicial Bo= 5% (espectro de respuesta elástico)

2. Convertir dicho espectro a formato **ADRS** según el **ATC-40** (Demanda ADRS inicial)

3. Generar la curva de capacidad de la estructura a ser analizada, dada como Cortante vs. Desplazamiento en el techo y convertirla al formato **ADRS** según el **ATC-40**.

4. Seleccionar un punto de desempeño inicial (aceleración máxima api, y desplazamiento dpi). Este puede estimarse con la aproximación de desplazamientos iguales.

5. Desarrollar la representación bilineal del espectro de capacidad según el ATC-40. Este define el periodo inicial To, el desplazamiento y la aceleración de fluencia. Para la representación bilineal desarrollada en el paso 5, calcular los valores de rigidez post elástica y ductilidad μ , como sigue:

$$\alpha = \frac{\frac{a_{pi} - a_y}{d_{pi} - d_y}}{\frac{a_y}{d_v}}$$
$$\mu = \frac{d_{pi}}{d_y}$$

Figura 174

Desplaz. Estimado-Iteración Directa Proced. A

Nota. Imagen que representa el Desplazamiento Estimado-Iteración Directa Procedimiento A, FEMA 440.

Procedimiento B (Intersección con demanda MADRS). Ajustar la demanda inicial en formato ADRS con el amortiguamiento efectivo β eff. Multiplicar las ordenadas de la aceleración de esta demanda con β eff, por el factor de modificación *M*, hallado con *T*eff. Determinar la máxima aceleración estimada ai y desplazamiento di mediante la intersección de la demanda MADRS con la curva de capacidad, como se muestra en la figura 162.

Figura 175

Desplaz. Máximo Estimado-Iteración Directa Proced. B

Nota. Imagen que representa el Desplazamiento Máximo Estimado-Iteración Directa Procedimiento B, FEMA 440.

Procedimiento C (búsqueda de posibles puntos de desempeño)

Ajustar la demanda inicial en formato **ADRS** con el amortiguamiento efectivo β eff. Multiplicar las ordenadas de la aceleración de esta demanda con β eff, por el factor de modificación *M*, hallado con *T*eff.

Se genera un posible punto de desempeño en la intersección de el período radial secante *T* sec con la demanda **MADRS**.

Incrementar y disminuir el punto de desempeño asumido para generar una serie de posibles puntos.

El punto de desempeño real será el que intercepte el espectro de capacidad. Este procedimiento puede automatizarse escogiendo una solución inicial para una ductilidad de $\mu = 1$, y las siguientes suposiciones se realizan incrementando este valor.

Figura 176

Desplaz. Máximo Estimado-Iteración Directa Proced. C

Nota. Imagen que representa el Desplazamiento máximo estimado-

Iteración Directa Procedimiento C.

Figura 177

Coef. de amortiguamiento efectiva parte 1

Table 6-1 Coef	ficients for us	e in Equation	ns for Effective	Damping			
Model	α(%)	А	В	с	D	E	F
Bilinear hysteretic	0	3.2	-0.66	11	0.12	19	0.73
Bilinear hysteretic	2	3.3	-0.64	9.4	1.1	19	0.42
Bilinear hysteretic	5	4.2	-0.83	10	1.6	22	0.40
Bilinear hysteretic	10	5.1	=1.1	12	1.6	24	0.36
Bilinear hysteretic	20	4.6	-0.99	12	1.1	25	0.37
Stiffness degrading	0	5.1	-11	12	1.4	20	0.62
Stiffness degrading	2	5.3	-1.2	11	1.6	20	0.51
Stiffness degrading	5	5.6	-1.3	10	1.8	20	0.38
Stiffness degrading	10	5.3	-1.2	9.2	1.9	21	0.37
Stiffness degrading	20	4.6	-1.0	9.6	1.3	23	0.34
Strength degrading	-3 ^a	5.3	-1.2	14	0.69	24	0.90
Strength degrading	-5 ^a	5.6	-1.3	14	0.61	22	0.90

a. Negative values of post-elastic stiffness should be limited to α_e , as discussed in Section 4.3

Nota. Coeficiente de amortiguamiento efectiva parte 1 según FEMA 440

Figura 178

Coef. de amortiguamiento efectiva parte 2

Table 6-2	Coefficients for u	ise in Equatio	ons for Effective	Period			
Model	<i>α</i> (%)	G	н	<u> </u>	J	К	L
Bilinear hysteretic	0	0.11	-0.017	0.27	0.090	0.57	0.00
Bilinear hysteretic	2	0.10	-0.014	0.17	0.12	0.67	0.02
Bilinear hysteretic	5	0.11	-0.018	0.09	0.14	0.77	0.05
Bilinear hysteretic	c 10	0.13	-0.022	0.27	0.10	0.87	0.10
Bilinear hysteretic	20	0.10	-0.015	0.17	0.094	0.98	0.20
Stiffness degradin	g O	0.17	-0.032	0.10	0.19	0.85	0.00
Stiffness degradin	g 2	0.18	-0.034	0.22	0.16	0.88	0.02
Stiffness degradin	g 5	0.18	-0.037	0.15	0.16	0.92	0.05
Stiffness degradin	g 10	0.17	-0.034	0.26	0.12	0.97	0.10
Stiffness degradin	g 20	0.13	-0.027	0.11	0.11	1.0	0.20
Strength degradir	ng −3 ^a	0.18	-0.033	0.17	0.18	0.76	-0.03
Strength degradir	ng –5 ^a	0.20	-0.038	0.25	0.17	0.71	-0.05

a. Negative values of post-elastic stiffness may be limited to $\alpha_{\rm e},$ as discussed in Section 4.3

Nota. Coeficiente de amortiguamiento efectiva parte 2 según FEMA 440

Método de Coeficientes. El método de coeficientes es el principal procedimiento estático no lineal propuesto en FEMA 356. Se obtiene una estimación

del desplazamiento global máximo (elástico e inelástico), llamado desplazamiento objetivo (FEMA 440, 2005). El proceso comienza con una curva fuerza-deformación idealizada (Pushover) que relaciona el desplazamiento en la base con el desplazamiento en la parte superior. El período efectivo Te se genera a partir del período inicial Ti, teniendo en cuenta una cierta pérdida de rigidez en la transición del comportamiento elástico al inelástico. El período efectivo representa la rigidez lineal de un sistema (oscilador) de 1 DOF correspondiente. Si el espectro de respuesta elástica se expresa como Sa vs. T, el período efectivo determina la respuesta de aceleración máxima del oscilador. El amortiguamiento asumido es típicamente del 5% y representa el grado en el que se puede esperar que responda una estructura típica en la región elástica.

Procedimiento propuesto en el FEMA 440 y el ASCE/SEI 41-13. Para el método del espectro de volumen, FEMA 440 evalúa el método y ofrece un "Procedimiento mejorado de corrección de desplazamiento" en su Capítulo 5. Contiene propuestas de coeficientes y nuevas expresiones basadas en datos empíricos, así como la eliminación del coeficiente C3 y su sustitución por el límite mínimo de resistencia (máximo R=µvalor de resistencia) necesario para evitar la inestabilidad dinámica. La norma ASCE/SEI 41-13 y ediciones anteriores especificaban este método como el procedimiento para determinar el desempeño sísmico. Curva Fuerza-Desplazamiento Idealizada El procedimiento a seguir para obtener esta curva idealizada es el mismo recomendado en FEMA 356, excepto que se incluye un tercer segmento debido a la caída del arrastre. El primer segmento parte del origen con una pendiente correspondiente a la rigidez transversal efectiva Ke, que es la rigidez de despegue calculada para un desplazamiento correspondiente al 60% del desplazamiento elástico de diseño Vy.

El segundo segmento representa la pendiente positiva del rendimiento α 1Ke definida por la conexión del punto (Va, Δ a) y la intersección con el primer segmento de modo que las áreas por encima y por debajo de la curva estén aproximadamente

equilibradas. El punto (Va, Ad) es el punto en la curva de capacidad real en el desplazamiento objetivo calculado o el desplazamiento correspondiente a la fuerza cortante base máxima, lo que sea menor. El tercer segmento de línea representa la pendiente negativa después de producir a2Ke definida por el punto (Va, Δa) y el punto donde la polarización de base disminuye al 60% del voltaje de producción real.

Figura 179

Curva idealizada fuerza-desplazamiento (FEMA 440, 2005)

Nota. Curva idealizada fuerza-desplazamiento propuesta por (FEMA 440, 2005)

4.2.33 Desplazamiento Objetivo

El desplazamiento objetivo δt para edificios con diafragma rígido, se calcula como:

$$\delta_t = C_0 C_1 C_2 S_a \frac{T_e^2}{4\pi^2} g$$

Donde:

Co: El mismo valor recomendado en el FEMA 356 (2-68)

C1: Factor de modificación para relacionar los desplazamientos inelásticos máximos esperados con los desplazamientos calculados para la respuesta elástica lineal: Donde:

$$C_1 = 1 + \frac{\mu_{strength} - 1}{aT_e^2}$$

Donde:

Según la norma, el valor a corresponder a la clasificación del tipo de suelo en el sitio. ASCE7:

a = 130 para clasificación de sitio A o B (roca)

a = 90 para clasificación de sitio C (suelo denso y roca suave), y

 $\mathbf{a} = \mathbf{60}$ para clasificación de sitio D, E o F (suelos rígidos, arcillosos o sin clasificación)

µstrength = La relación entre la demanda de resistencia elástica y el coeficiente de resistencia a la fluencia:

$$\mu_{strength} = \frac{S_a}{V_y/W} C_m$$

NSP no está permitido si la fuerza µstrength excede el valor µmáx.

Te = período fundamental efectivo del edificio en la dirección considerada, en segundos.

 $\mathbf{V}\mathbf{y}$ = resistencia del edificio en la dirección considerada calculada a partir de la curva fuerza-deformación idealizada.

 $\mathbf{W} = \text{peso sísmico real (si corresponde).}$

Cm = factor de masa efectivo tomado de ASCE 41-13 Tabla 7-4. Si el período fundamental T es mayor que 1,0 segundos, tome 1,0. Para períodos inferiores a 0,2 segundos, C1 no necesita ser mayor que el valor calculado T=0,2 segundos. Para períodos superiores a 1 segundo, C1 = 1,0.

C2: factor de corrección que representa el efecto estrangulador de los ciclos de histéresis, la reducción de la rigidez cíclica y la reducción de la resistencia a la respuesta de desplazamiento máximo. Para períodos superiores a 0,7 segundos, e C2 = 1,0. FEMA 440 recomienda que este factor considere solo los efectos de degradación de la rigidez:

$$C_2 = 1 + \frac{1}{800} \left(\frac{\mu_{strength} - 1}{T_e}\right)^2$$

Para edificios con rigidez postproducción negativa, la relación de resistencia máxima μ máx es igual a:

$$\mu_{max} = \frac{\Delta_d}{\Delta_y} + \frac{|\alpha_e|^{-h}}{4}$$

Figura 180 Resultados del desplazamiento PUSH en el eje X

Figura 181

Generaciones de las primeras rótulas plásticas en el eje X

3-D View - Displacements (PUSHX) Step 3/9 [cm]

Nota. Generación de la primera rótula plástica en la columna del extremo izquierdo en la dirección X

Resultados del desplazamiento PUSH en el eje Y

Generaciones de las primeras rótulas plásticas en el eje Y

Nota. Generación de la primera rótula plástica en la viga del segundo nivel en la

dirección Y

P.D.-FEMA 440 para un sismo de diseño ocasional en X

P.D.-FEMA 440 para un sismo de diseño raro en X

P.D.-FEMA 440 para un sismo de diseño muy raro en X

P.D.- FEMA 440 para un sismo de diseño frecuente en Y

		F	EMA 440 - PUNTO DE DESEMPEÑO	
			SISMO FRECUENTE-DIRECCIÓN Y-Y	
 Name 			FEMA 440 Equivalent Linearization	
Name	Pushover1	1.50 -	i Einz teo Equivalent Eineanzation	
 Plot Definition 				Legend
Plot Type	FEMA 440 EL			Canacity
Load Case	PUSHY			Single Demand
Legend Type	Integrated	1.35 -		Demand Eamily
 Plot Settings 				Derived Lines
Plot Axis Type	Sa - Sd			Period Line
Show Associated Demand	Yes	1.20 -		
 Demand Spectrum 				
Spectrum Source	Defined Function			
Function Name	2.Sismo Frecuente - Vision 2000			
SF (cm/sec ²)	981	1.05 -		
Damping Parameters		-		
Period Parameters		00		
Capacity Spectrum Curve		5 0 90 -		
Family of Demand Spectra		1 1 0.00 I		
Single Demand Spectrum		010		
Constant Period Lines		6		
Performance Point		0.75 -		
Point Found	Tes	¥ V		
Shear (kgf)	476199	m		
Displacement (cm)	1.1219	÷		
Sa (g)	0.022	0.00 -		
So (cm)	0.000	6		
T effective (sec)	0.236			
Prestite Deter	0.33	0.45 -		
Ductility Hatio	0.0776			
Madification Easter M	1.254259			
Modification Pactor, M	1.204203			
		0.30 -		
		0.15		
		0.10		
		0.00		
		0.00	0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.1	00 4.50 5.00
Performance Point			Spectral Displacement, cm	
		1 secant = 0.296 sec;	1 effective = 0.296 sec; Ductity ratio = 1; Damping ratio, bert = 0.05	
			SISMO FRECUENTE-DIRECCIÓN Y-Y	
ERSECCIÓN DEL PUNTO		Si	T secante (sec)	0.296
ERSECCIÓN Sa (g)		0.424543	T efectivo (sec)	0.33
ERSECCIÓN Sd (cm)		0.922	Relación de la Ductilidad	1,725953
ERZA CORTANTE (Kof)		476199	Relación de amortiquamiento (Beff)	0.0776
SPLAZAMIENTO (Cm)		1.1219	Factor de Modificación (M)	1.254259
or brancher (Cill)		1.1213	r deter de recuried d'en (ing	1.234235

P.D.-FEMA 440 para un sismo de diseño ocasional en Y

Figura 190

P.D.- FEMA 440 para un sismo de diseño raro en Y

P.D.-FEMA 440 para un sismo de diseño muy raro en Y

			SISMO MUY RARO-D	DIRECCIÓN Y-Y				
Name				F	FEMA 440 Ea	uivalent Linearia	ration	
Name	Pushover1	2.00 -						
Plot Definition								Legend
Plot Type	FEMA 440 EL							
Load Case	PUSHY	~						Single Demand
Legend Type	Integrated	1.80 -						Demand Eamily
Plot Settings								Demand Parmy
Plot Axis Type	Sa - Sd							Period Line
Show Associated Demand	Yes	1.60 -						
Demand Spectrum								
Spectrum Source	Defined Function							
Function Name	5.Sismo Muy Raro - Vision 2000						-	
SF (cm/sec ²)	981	1.40 -						
Damping Parameters								
Period Parameters		0)						
Capacity Spectrum Curve		5						
Family of Demand Spectra		3 1.20 -						
Single Demand Spectrum		2						
Constant Period Lines		e						
Performance Point		S 1.00 -				/		
Point Found	Yes	AC						
Shear (kgf)	1515932.11	-						
Displacement (cm)	4.2204	11						
Sa (g)	1.335371	3 0.80 -			-			
Sd (cm)	3.4311	ā.						
T secant (sec)	0.321	0						
T effective (sec)	0.321	0.60						
Ductility Ratio	1.6982							
Damping Ratio, Beff	0.0704							
Modification Factor, M	0.997542							
		0.40 -						
		0.20 -						
		0.00	0.50 1.00	1.50	2.00	2.50 3.0	0 3.50 4.00	4.50 5.00
ad Case load case for which the response is disp	played.				Spectral I	Displacement, ci	m	
		T secant = 0.285 sec; T	effective = 0.292 sec; Ductility	ratio = 1.515527; Dar	mping ratio, Beff = 0.0	061561		
			SISMO MUY RARO-D	IRECCIÓN Y-Y				
RSECCIÓN DEL PUNTO		Si	T secante (sec)					0.321
RSECCIÓN Sa (g)		1.335371	T efectivo (sec)					0.321
RSECCIÓN Sd (cm)		3.4311	Relación de la Duct	ilidad				1.6982
RZA CORTANTE (Kgf)		1515932.11	Relación de amortig	juamiento (Beff)				0.0704
PLAZAMIENTO (Cm)		4.2204	Factor de Modificaci	ión (M)				0.997542

<i>P.DASCE 41-13</i>	para un	sismo de	diseño	frecuente	en X
	1			/	

SIMD FRECUENTE-DIRECCIÓN X-X Neme Page ment Description Las Conse Acce 41-13 NSP Ligand Las Conse PLOSE Acce 41-13 NSP Las Conse PLOSE PLOSE Description Acce 41-13 NSP Lagond Conserver for Conserver PLOSE PLOSE Description 100 PLOSE PLOSE Description 100 PLOSE PLOSE PLOSE Description 100 PLOSE PLOSE PLOSE Description 100 PLOSE PLOSE PLOSE PLOSE Description 1000000000000000000000000000000000000			1	SCE 41-13 - PUNTO DE DESEMPEÑO		
Name ASCE 41-13 NSP Description ACC 41-13 NSP Description ACC 41-13 NSP Description Comment from the first of the firs				SISMO FRECUENTE -DIRECCIÓN X-X		
Image Ruthworld Light of the second	Name		E+6	ASCE 41-13 NSP		
Median ACC 41 3387 Acc 41 3387 <t< th=""><th>Name</th><th>Pushover1</th><th>1.50 -</th><th></th><th></th></t<>	Name	Pushover1	1.50 -			
Prof. Ten Prof. (24.45) (26.4) Program Prof. (24.45) Prof. (24.4	Plot Definition				Legend	
Laboration Planet Description Displacement Loss Displacement Loss Di	Plot Type	ASCE 41-13 NSP			Capacity	
Image: Section Description Description <thdescription< th=""></thdescription<>	Load Case	PUSHX			Bilinear FD	
Operation 0.00	Legend Type	Integrated	1.35 -			
Demonstration 0.00 100	Demand Spectrum					
Sector Source Defect Function 12 File (1) 10 13 10 10 14 10 10 15 100 10 16 100 10 16 100 10 16 100 10 17 100 10 18 100 100 10 100 100 10 100 100 11 100 00 00 11 1000 000 00 11 1000 000 00 00 11 1000 000 00 00 00 11 1000 000 00 <td>Damping Ratio</td> <td>0.05</td> <td></td> <td></td> <td></td>	Damping Ratio	0.05				
International 2.80 Proceeded Proceeded <th< td=""><td>Spectrum Source</td><td>Defined Function</td><td>1 20 -</td><td></td><td></td></th<>	Spectrum Source	Defined Function	1 20 -			
Image: Section of the section of th	Function Name	2.Sismo Frecuente - Vision 2000				
In second method 1 Col System Detail Viai Col System Detail Viai Col System Detail Viai Col System Detail Viai Theore forces Detail Viai Detail Viai Detail Viai Col System Detail Viai Detail Viai Detail Viai Col System Displacement, cm Use Col System Displacement, cm	SF (cm/sec*)	981				
bdd 58 10 <td< td=""><td>Ts (sec)</td><td>1</td><td></td><td></td><td></td></td<>	Ts (sec)	1				
C Spright Out A Value Conserver Structure Out A Value Date Sing 1156 Date Si	Include SSI	No	1.05 -			
Charles for Core Order Numer These for Core Image for Core Image for Core Image for Core Im	C2 Type	Default Value				
Calculated Career Transformed Totals 1 155 2	Cm Type	Default Value				
Non-a Total 1156 0 </td <td>Capacity Curve</td> <td></td> <td></td> <td></td> <td></td>	Capacity Curve					
Toget Toget <td< td=""><td>Bilinear Force-Displacement</td><td>t Curve</td><td>0.90 -</td><td></td><td></td></td<>	Bilinear Force-Displacement	t Curve	0.90 -			
During of the distance 1135 2 4 Construction 1135 2 4 Stage 0.575 12 Stage 0.575 12 Stage 0.575 12 Stage 0.575 12 Stage 0.577 er Construction 0.577 er Construction 0.577 er Construction 0.577 er Construction 0.58 pr Wordt Stage 0.59 pr Construction 0.59 pr Displacement, cm 1.50 Strear (Kgl) Name 0.150 Strear (Kgl) Strear (Kgl) 0.150 Strear (Kgl) Construction 0.2778 Mark (Ad3577, 14375.95 Wright (kgl) 0.23783 Constrest 0.278	Target Displacement Result	ta	×			
But end State Calification 1 207501 Calification 2370 Calification 2300 Calinononono 2300<	Displ. (cm)	1.156	1			
Image: Consistent Forwarders Image: Consistent Forwarders <th< td=""><td>Shear (kgf)</td><td>513852.24</td><td>9 0.7F</td><td></td><td></td></th<>	Shear (kgf)	513852.24	9 0.7F			
Control 127931 Sa 0275121 Sa 0276 Sa 0277 Sa 0280 Sa 0297 Sa 039 Sa<	Calculated Parameters		£ 0.75 -			
1 139997 19997 1 13997 027 1 1000 027 1 1000 027 1 1000 027 1 1000 027 1 1000 027 1 1000 027 1 1000 027 1 1000 027 1 1000 027 1 1000 027 1 1000 020 1 1000 100 100 1 1000 100 100 100 1 1000 100 100 100 100 1 1000 100 100 100 100 100 1 1000 100 100 100 100 100 100 1 1000 100 100 100 100 100 100 1 1000 100 100 100 100 100 100 1 1000 <t< td=""><td>CO</td><td></td><td></td><td></td><td></td></t<>	CO					
1 1 1000007 100 1	C1	1 205007	<u>v</u>			
1 2075128 1 208001.37 1	C2	1.030567	m 0.60 -			
In Section 0.29 In Section 0.44755.95 In Section 0.39 In Section 0.30	Sac	0.375128				
a b d d m b b d d b d d d	Te (see)	0.279				
a b dy (m) 2 4 2 1 2 5 m b dy (m) 0 7 7 b dy (m) 0 7 7 b dy (m) 0 7 7 b dy (m) 0 2 7 7 b dy (m) 0 4 7 b dy (m)	K) (kat (cm))	444766.06				
It has 0.207 0.207 Apha 0.200 Apha 0.207 Apha 0.20787 Apha 0.20787 Apha 0.20780 Apha 0.20781 Apha 0.20781 Apha 0.2378 Apha 0.238001.37 Apha	Ke (kat (om)	444755.05	0.45 -			
Impain 0 00007 0 00007 Opending 1 200000 0 200000 Opending 1 200000 0 0000 Opending 1 2000000 0 0000 Opending 1 2000000000 0 00000 Opending 1 20000000 0 000000 Opending 1 2000000000 0 00000000000000000000000000000000000	The (regrading)	0.000				
added Parameters 0.30 0.0	II (Bec)	0.278				
Demons de de de la service Demons Description Demons Description	Apria	0.99677				
Weigh Weigh <th< td=""><td>Ustrength</td><td>2.376923</td><td>0.30 -</td><td></td><td></td></th<>	Ustrength	2.376923	0.30 -			
Interface Interface <thinterface< th=""> Interface <thinterface< th=""> Interface Interface</thinterface<></thinterface<>	Dy (cm)	0.65				
Image: Second	vy (kgt)	289091.37				
Image: Constraint of the second of	Weight (kgf)	1831768.9	0.45			
and ded Parameters Displacement, cm Displacement,	Cm	1	0.15 -			
Activated Parameters D 00 0 0 0 100 100 200 200 300 350 400 450 450 450 0000 0000 000						
Activities 000 00 000 100 100 200 200 200 3.00 3.00 4.00 4.00 000 000 000 000 000 000 00						
Base is 100 200			0.00			
Instruction Displacement, cm Use: (4839877) 1497761; Vir. (26.9)			0.00	0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00	450 5.00	
Idate: (483987, 148764); like d. 0) ISMO RECEION 2.8 ISMO RECEION 2.8 ISMO REC	alculated Parameters			Displacement, cm		
Items (kassor): Items (
ISMO RELEGION X.8 ISMO RELEGION X.8 pl(m) 1.55 Denar (kgl) 5.356.24 I (kgl) 0.0771 I (kgl) 0.0771 I (kgl) 0.0771 I (kgl) 0.0772 I (kgl) 0.0771 I (kgl) I (kgl) 0.0771 I (kgl) I (kgl) <th colsp<="" td=""><td></td><td></td><td>Max: (4.083977, 14877</td><td>64); Min: (0, 0)</td><td></td></th>	<td></td> <td></td> <td>Max: (4.083977, 14877</td> <td>64); Min: (0, 0)</td> <td></td>			Max: (4.083977, 14877	64); Min: (0, 0)	
pp[(m) 1.156 Shear (kgf) 513852.24 1.207591 Ti (sec) 0.278 1.20597 Alpha 0.9987 1.20597 Alpha 0.9987 1.030567 u Strength 0.9987 6 0.375128 Dy (cm) 0.655 (sec) 0.278 Vy (kg) 283091.37 (kg/cm) 444755.95 Weight (kg) 1831768.9				SISMO FRECUENTE -DIRECCIÓN X-X		
1 2079) Ti (ac) 0.278 1 2079) Ti (ac) 0.977 1 20597 Am 0.977 1 0.0567 Am 0.278 2 1000 0.57528 Dy (cm) 0.65 (ce) 0.278 Vy (g) 289001.37 (kg/cm) 444755.95 Weight (kg) 1831768.9	spl (cm)		1.156	Shear (Kgf)	513852.24	
1.207591 Ti (sec) 0.278 1.20597 Alpha 0.9877 1.030567 U Strength 0.9877 2 0.37128 Oy (cm) 0.65 (sec) 0.278 Vy (kg) 280091.37 (kg/cm) 444755.95 Weight (kg) 1831768.9						
1.29597 Apha 0.9987 1.03057 0 Strength 2.376923 g 0.375128 Dy (m) 0.65 (sc) 0.278 Vy (kg) 289091.37 (kg/cm) 444755.95 Weight (kg) 1831768.9			1.207591	Ti (sec)	0.278	
1.020567 U Strength 2.237023 g 0.375128 Dy (m) 0.65 (sec) 0.278 Vy (kg) 289001.37 (kg/cm) 444755.95 Weight (kg) 1831768.9			1.295997	Alpha	0.99877	
Lg 0.37512B Dy (cm) 0.65 (sec) 0.278 Vy (kg) 289091.37 (kg/cm) 444755.95 Weight (kg) 1831769.			1.030567	u Strength	2.376923	
(sec) 0.278 Vy (sg) 289091.37 (kg/cm) 444755.95 Weight (kg) 1831768.9	·8		0.375128	Dy (cm)	0.65	
(Kg/cm) 444755.95 Weight (kg) 1831768.9	(sec)		0.278	Vy (kg)	289091.37	
	(Kg/cm)		444755.95	Weight (kg)	1831768.9	
(Kg/cm) 444755.95 Cm 1	(Kg/cm)		444755.95	Cm	1	

P.D.-ASCE 41-13 para un sismo de diseño ocasional en X

P.D.-ASCE 41-13 para un sismo de diseño raro en X

			SISMO RARO-DIRECCIÓN X-X	
Name		E+6	ASCE 41-13 NSP	
Name	Pushover1	1.50 -		
 Plot Definition 				Legend
Plot Type	ASCE 41-13 NSP			Capacity
Load Case	PUSHX			Official ST
Legend Type	Integrated	1.35 -		- Diinear PD
Demand Spectrum				
Damping Batio	0.05			
Spectrum Source	Defined Eurotion			
Euroction Name	4 Siemo Ram - Meion 2000	1.20 -		
CE (am (acc))	0.01			
Tr (croc)	501			
TS (Sec)				
Include 551	No	1.05 -		
C2 Type	Default Value			
Cm Type	Default Value			
Capacity Curve				
Bilinear Force-Displacement	nt Curve	5 0.90 -		
 Target Displacement Result 	Its	*		
Displ. (cm)	3.2953			
Shear (kof)	1317207.58	8		
Calculated Parameters		<u> </u>		
C0				
C1	1 240442	S.		
67	1.240443	8		
C2		LL 0.60 -		
Sa, g	1.125384			
Te (sec)	0.278			
Ki (kgf/cm)	444755.95	0.45		
Ke (kgf/cm)	444755.95	0.45 -		
Ti (sec)	0.278			
Alpha	0.698703			
uStrength	2 118495	0.20		
Dv (cm)	2 1879	0.50		
Vis fearf)	973070.02			
vy (cgr)	575070.02			
Weight (cgr)	1031700.0	0.15		
Cm	1	0.10 4		
		0.00		
		0.00	0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00	4.50 5.00
Commenter Comment			Displacement em	
apacity Curve			Displacement, cm	
		Max: (4.083977, 1487764	4); Min: (0, 0)	
			SISMO RARO-DIRECCIÓN X-X	
spl (cm)		3.2953	Shear (Kgf)	1317207.58
		1 200172	Ti(see)	0.278
·		1.2091/2		0.278
L		1.240443	Alpha	0.698.703
2		1.02017	u Strength	2.118495
9		1 125384	Dy (cm)	2 1879
/0 (sec)		0.278	Ly (ka)	973070.02
(acc)		5.278	x y (68)	575570.02
(Kg/cm)		444755.95	Weight (kg)	1831768.9
(Kalcm)		444755.95	Cm	1
		/33.93		1
		-		

P.D.- ASCE 41-13 para un sismo de diseño muy raro en X

			SISMO MUY RARO-DIRECCIÓN X-X
 Name 		E+6	ASCE 41-13 NSP
Name	Pushover1	1.50 -	
 Plot Definition 			Lepend
Plot Type	ASCE 41-13 NSP		Const.
Load Case	PUSHX		Chipachy
Legend Type	Integrated	1.35 -	Bilinear PD
Demand Spectrum			
Damoing Batio	0.05		
Constant Country	Defend E-metion		
Spectrum source	Compared Paradom	1.20 -	
Purcourrisane	0.3mm0 mby Haro - vision 2000		
SF (cm/sec')	901		
Ts (sec)	1		
Include SSI	No	1.05 -	
C2 Type	Default Value		
Cm Type	Default Value		
Capacity Curve			
Bilinear Force-Displacement	Curve	0.90 -	
 Tarnet Displacement Results 		×	
Direct (em)	4.6757	-	
Change (conty	1407203.0	8	
Shear (kgr)		<i>€</i> 0.75 –	
 Calculated Parameters 		S	
CO	1.232094		
C1	1.314631	ě	
C2		CO 0.60	
Sa, g	1.463		
Te (sec)	0.278		
Ki (kaf/cm)	444755.95		
Ke (kot (cm))	444755.95	0.45 -	
Th (man)	0.278		
(Sec)	0.278		
Paperia	0.403207		
ustrength	2.463603	0.30 -	
Dy (cm)	2.4458		
Vy (kgf)	1087787.84		
Weight (kgf)	1831768.9		
Cm	1	0.15 -	
Aunction Name	00.0576	0.00	0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 Displacement, cm
		Max: (4.083977, 14877	64); Min: (0, 0)
			SISMO MUY RARO-DIRECCIÓN X-X
spl (cm)		4.6757	Shear (Kgf) 1487763.9
)		1.232094	11 (SeC) 0.278
		1.314031	Apria 0.403297
.g		1.463	Dy (m) 2.4058
(sec)		0.278	Vy (kg) 1087787.84
(Kg/cm)		444755.95	Weight (kg) 1831768.9
(Kg/cm)		444755.95	Cm 1

P.D.-ASCE 41-13 para un sismo de diseño frecuente en Y

			ASCE 41-13 - PUNTO	DE DESEMPEÑ	ìo			
			SISMO FRECUENTE	-DIRECCIÓN Y-Y				
Name		E+6			ASC	CE 41-13 NSP		
Name	Pushover1	2.00 -						
Plot Definition								Legend
Plot Type	ASCE 41-13 NSP							Converts.
Load Case	PUSHY							Capacity
Lowerd Trees	Interneted	1.80 -						Bilinear FD
Legend Type	ritegrateu							
Demand Spectrum								
Damping Ratio	0.05							
Spectrum Source	Defined Function	1.00						
Function Name	2.Sismo Frecuente - Vision 2000	1.60 -						
SE (cm/sec-3)	981							
Te (rec)	1							
To (sec)	1							
Include 551	NO	1.40 -						
C2 Type	Default Value							
Cm Type	Default Value							
Capacity Curve								
Bilinear Force-Displacement	Curve	1.20 -						
Tarnet Displacement Day 8	-	<u>Š</u>						
Contraction of the second second	1 2020							
Dispi. (cm)	1.3023	9						
Shear (kgf)	553033.85	e 1.00 -						
Calculated Parameters		0						
C0	1,216733	e a						
C1	1 282044	20						
00	1.021207	m						
02	1.031207				/			
Sa, g	0.375128							
Te (sec)	0.296							
K) (kgf/cm)	424471							
Ke feet/em)	424471	0.60 -						
The formal	0.000							
II (sec)	0.296							
Alpha	0.999992		/					
uStrength	2.479551	0.40 -	/					
Dy (cm)	0.6529							
We first	277125.98							
17 4-97	100100							
vveigni (rigr)	1031700.3	0.00						
Cm Cm	1	0.20 -						
		0.00						
		0.00	0.50 1.00	1.50	2.00	2.50 3.00	3.50 4.0	00 4.50 5.00
macity Curve					Disp	lacement cm		
,,					Diop	accontent, ent		
		Max: (4.975158, 1686	819); Min; (0, 0)					
			ELENAC EDECLIENTE	DIRECCIÓN V V				
			SISIVIO FRECOENTE	=DIRECCION T=T				
pl (cm)		1.3029	Shear (Kgf)					553033.85
		1.216733	Ti (sec)					0.296
		1.282044	Alpha					0.999992
		1 031297	u Strength					2 479551
g		0.375128	Dy (cm)					0.6529
()		0.000	16.0					277425.00
(sec)		0.296	VY (Kg)					277125.98
Kg/cm)		424471	Weight (kg)					1831768.9
(Kg/cm)		424471	Cm					1

P.D.-ASCE 41-13 para un sismo de diseño ocasional en Y

P.D.-ASCE 41-13 para un sismo de diseño raro en Y

P.D.-ASCE 41-13 para un sismo de diseño muy raro en Y

Figura 200

Registros para el T.H. Red Acelerográfica del CISMID

Input File Paramete	ers			×
First Line Last Line Time Step dt Scaling Factor Acceleration Units: cm/ Displacement Units Change L	60 21866 0.01 1.0 : cm/sec2 sec s: cm	Single Acceleration Time & Acceleration Multiple Acceleration Acceleration Column Time Column Frequency Initial Values Skipped	value per line n values per line n values per line 2 1 1 1 1 1 0 0	Cancel <u>H</u> elp <u>Program Defaults</u> Set As <u>D</u> efault
Acceleration File	PANDA 10.0	1 25 hts)		
FILIRO: FASA	DATOS	I = 25 HUZ) DE ACELERACION:		1
DT	EO	NS NS	v	
0	0.413	41 -0.25737	1.48593	
0.01	0.768	75 0.76026	-0.45987	
0.02	0.1	35 1.13637	-1.90343	
0.03	-0.051	79 0.68497	0.43444	
0.04	0.918	63 0.30649	3.67711	
0.05	2.159	58 0.59281	2.31691	
0.06	2 882	07 1 21769	-3 19922	
1			Line	×21866 Pos:13

Series de tiempo

Figura 202

Aplicando la corrección de la línea base y filtro

Espectro Amplitud según Fourier

Figura 204

Respuesta espectral elástica/inelástica

Parámetros de movimiento del suelo

Figura 206

Sismo escalado Ica 2007-NS

Sismo escalado Ica 2007-EW

Figura 208

Sismo escalado Lima 1996-NS

Sismo escalado Lima 1996-EW

Figura 210

Sismo escalado Lima 1974-NS

Figura 211

Sismo escalado Lima 1974-EW

4.3 Resultados

Resultados de Análisis No lineal Pushover

Nivel de desempeño VISION 2000 - Dirección XX

Figura 212

Nivel de desempeño VISION 2000 - Dirección X-X

Nivel de desempeño VISION 2000 - Dirección YY

Figura 213

Nivel de desempeño VISION 2000 - Dirección Y-Y

Nivel de desempeño ASCE-SEI41-13 - Dirección XX

Figura 214

Nivel de desempeño ASCE-SEI41-13 - Dirección X-X

	N	iveles de desempe	ño del edificio obje	tivo
Nivel de amenaza sísmica	Operacional (1-A)	Ocupación Inmediata	Seguridad de Vida	Prevención de Colapso
	()	(1-B)	(3-C)	(5-D)
50%/50 años	a	b	с	d
BSE-1E		6		
(20%/50 años)	c		B	
BSE-2E			k	
(5%/50 años)		1	ĸ	
BSE-2N				
(ASCE 7 MCE _R)		п	0	Р
Notes: Cada celda en la	matriz representa un Ok	ietivo de Desemneño d	lisereto	
Notas: Cada celda en la Los Objetivos de Desem pueden ser seleccionado Objetivos de Desem	matriz representa un Ob peño en la matriz puede s para un edificio que es apeño Básico para es	jetivo de Desempeño c n ser usados para repre asignado a la Categori difícios existentes (lisereto sentar 3 tipos de objetivo ia de Riesgo I o II, de la s (BPOE) g & 1	os de desempeño, que siguiente forma:
Notas: Cada celda en la Los Objetivos de Desem pueden ser seleccionado Objetivos de Desem Objetivos Meiorado	matriz representa un Ob peño en la matriz puede s para un edificio que es speño Básico para en s	jetivo de Desempeño e n ser usados para repre asignado a la Categori difícios existentes (liscreto sentar 3 tipos de objetivo (a de Riesgo I o II, de la (BPOE) g & 1 g & 1 g & i, i,	os de desempeño, que siguiente forma:
Notas: Cada celda en la Los Objetivos de Desem pueden ser seleccionado Objetivos de Desem Objetivos Mejorado	matriz representa un Ob speño en la matriz puede s para un edificio que es speño Básico para en s	jetivo de Desempeño d n ser usados para repre asignado a la Categori difícios existentes (lisereto sentar 3 tipos de objetivo ia de Riesgo I o II, de la s (BPOE) g & 1 g & i, j, l & e ó	os de desempeño, que siguiente forma: m, n, o, ó p f
Notas: Cada celda en la Los Objetivos de Desen pueden ser seleccionado Objetivos de Desen Objetivos Mejorado	matriz representa un Ob peño en la matriz puede s para un edificio que es upeño Básico para en s	jetivo de Desempeño c n ser usados para repre asignado a la Categori difícios existentes (tiscreto sentar 3 tipos de objetive ia de Riesgo I o II, de la s (BPOE) g & 1 g & i, j, 1 & e ó g & 1 &	os de desempeño, que siguiente forma: , m, n, o, ó p f , a, ó b
Notas: Cada celda en la Los Objetivos de Desen pueden ser seleccionado Objetivos de Desen Objetivos Mejorado	matriz representa un Ob peño en la matriz puede s para un edificio que es upeño Básico para en s	jetivo de Desempeño c n ser usados para repre asignado a la Categori dificios existentes (lisereto sentar 3 tipos de objetive (a de Riesgo 1 o II, de la s (BPOE) g & l g & i, j, l & e o g & l k, m, n,	os de desempeño, que siguiente forma: , m, n, o, ó p f a, ó b ó solamente o
Notas: Cada celda en la Los Objetivos de Desem pueden ser seleccionado Objetivos de Desem Objetivos Mejorado	matriz representa un Ob peño en la matriz puede s para un edificio que es upeño Básico para en s	jetivo de Desempeño é n ser usados para repre asignado a la Categori difícios existentes (lisereto sentar 3 tipos de objetivo (a de Riesgo I o II, de la s (BPOE) g & l g & i, j, l & e ó g & l & k, m, n, solamen	os de desempeño, que siguiente forma: , m, n, o, ó p f a, ó b ó solamente o nte g
Notas: Cada celda en la Los Objetivos de Desem pueden ser seleccionado Objetivos de Desem Objetivos Mejorado Objetivos Limitado:	matriz representa un Ob peño en la matriz puede s para un edificio que es peño Básico para e s	jetivo de Desempeño é n ser usados para repre asignado a la Categori dificios existentes (lisereto sentar 3 lipos de objetivi (a de Riesgo I o II, de la s (BPOE) g & 1 g & i, j, l & e ó g & l & g & l & k, m, solamen solamen	s de desempeño, que iguiente forma: , m, n, o, ó p f a, ó b ó solamente o nte g nte l
Nivel de desempeño ASCE-SEI41-13 - Dirección YY

Figura 215

Nivel de desempeño ASCE-SEI41-13 - Dirección Y-Y

	Ni	iveles de desempe	ño del edificio obje	tivo
Nivel de	Operacional	Ocupación Inmediata	Seguridad de Vida	Prevención d Colapso
amenaza sismica	(1-A)	(1-B)	(3-C)	(5-D)
50%/50 años	а	b	с	d
BSE-1E		c	_	
(20%/50 años)	e	1	g	п
BSE-2E			k	
(5%/50 años)	1	1	ĸ	
BSE-2N				
(ASCE 7 MCE _R)	m	п	0	р
Notas: Cada celda en la m Los Objetivos de Desemp pueden ser seleccionados j	atriz representa un Ob eño en la matriz puede para un edificio que es	jetivo de Desempeño d n ser usados para repre asignado a la Categori	liscreto sentar 3 tipos de objetivo ía de Riesgo I o II, de la s	os de desempeño, que
Objetivos de Desemp	eño Básico para eo	difícios existentes ((BPOE) g & l	
Objetivos Mejorados			g & i, j, 1 & c ó	m, n, o, ó p f
			o&1&	a ó b
			k. m. n.	ó solamente o
Obietivos Limitados			solame	nte a
			solame	nte l

Nivel de desempeño ATC40 - Dirección XX

Figura 216

Nivel de desempeño ATC40 - Dirección X-X

Nexal da anno 1	Nivel de desempeño de la estructura						
sísmica	Operacional	Ocupación inmediata	Seguridad de vida	Estabilidad Estructural			
Servicio (SE)	-	-	-	-			
Diseño (DE)	-	- 1	v	-			
Máximo (ME)	-	-		V			

Nivel de desempeño ATC40 - Dirección YY

Figura 217

Nivel de desempeño ATC40 - Dirección Y-Y

 Tabla 2-4
 Objetivos de desempeño de seguridad básica para estructuras convencionales

Neuel de amonora	Nivel de desempeño de la estructura							
sísmica	Operacional	Ocupación inmediata	Seguridad de vida	Estabilidad Estructural				
Servicio (SE)	-	-	-	-				
Diseño (DE)	-	-	V	-				
Máximo (ME)	-	-	-	V				

Resultados del Análisis T. Historia lineal

Figura 218

Definición de casos de carga para ATHL

d Cases			Click to:
Load Case Name	Load Case Type		Add New Case
RY=1	Response Spectrum		Add Copy of Case
ATHL LIMA 66 CASO I	Linear Modal History		Modify/Show Case
ATHL LIMA 66 CASO II	Linear Modal History		Delete Case
ATHL LIMA 74 CASO I	Linear Modal History	*	
ATHL LIMA 74 CASO II	Linear Modal History		Show Load Case Tree
ATHL ICA 07 CASO I	Linear Modal History	*	
ATHL ICA 07 CASO II	Linear Modal History		
ATHNL LIMA 66 DISEÑO X	Nonlinear Modal History (FNA)		ОК
ATHNL LIMA 66 DISEÑO Y	Nonlinear Modal History (FNA)		

Figura 219

Datos de carga para el sismo Lima 1966 para el ATHL

nera					General				
Load Case Name		ATHL LIMA 66 CASO	I	Design	Load Case Name		ATHL LIMA 66 CAS	50 II	Design
Load Case Type/Subtype T	ine History	 Linear M 	lodal 🗸	Notes	Load Case Type/Subtyp	e Time His	tory ~ Linea	r Modal 🗸 🗸	Notes
Mass Source		Previous (PESO SIS)	(ICO)		Mass Source		Previous (PESO S	ISMICO)	
Analysia Model		Default			Analysis Model		Default		
ads Applied					Loads Applied				
Load Type Loa	d Name	Function	Scale Factor	0	Load Type	Load Nam	e Function	Scale Factor	0
Acceleration U1		SISMO ESCALADO	0.01	Add	Acceleration	U2	SISMO ESCALADO	0.01	Add
Acceleration U2		SISMO ESCALADO	3.01	Delete	Acceleration	U1	SISMO ESCALADO	0.01	Delete
				Advanced					Advanc
her Parameters					Other Parameters				
Modal Load Case		MODAL	~		Modal Load Case		MODAL		
Time History Motion Type		Transient	~		Time History Motion Typ	•	Transient	~	
Number of Output Time Steps			9882		Number of Output Time	Steps		9882	
Output Time Step Size			0.02	860	Output Time Step Size			0.02	Sec.
			Modify/Show		Modal Damping	Constant at 0.	05	Modify/Show	

Datos de carga para el sismo Lima 1974 para el ATHL

Dera				General				
Load Case Name	ATHL LIMA 74 CASO	1	Design	Load Case Name		ATHL LIMA 74 CAS	SO II	Der
Load Case Type/Subtype Time History	 Linear M 	lodal ~	Notes	Load Case Type/Subtype	Time History	~ Linear	r Modal 🛛 🗸	No
Mass Source	Previous (PESO SISN	MICO)		Mass Source		Previous (PESO SI	ISMICO)	
Analysia Model	Default			Analysis Model		Default		
ads Applied				Loads Applied				
Load Type Load Name	Function	Scale Factor	0	Load Type	Load Name	Function	Scale Factor	0
Acceleration U1	SISMO ESCALADO 0	0.01	Add	Acceleration	U2	SISMO ESCALADO	0.01	A
1							0.04	
Acceleration U2	SISMO ESCALADO 0	0.01	Delete	Acceleration	U1	SISMO ESCALADO	0.01	De
Acceleration U2	SISMO ESCALADO (0.01	Delete Advanced	Acceleration Other Parameters	U1	SISMO ESCALADO	0.01	Ad
Acceleration U2 ther Parameters Modal Load Case	MODAL	0.01	Delete Advanced	Acceleration Other Parameters Modal Load Case	וע	MODAL		
Acceleration U2 ther Parameters Modal Load Case Time History Motion Type	MODAL Transient	0.01 ~ ~	Delete Advanced	Acceleration Other Parameters Modal Load Case Time History Motion Type	UT	MODAL Transient	- [401 	
Acceleration U2 Per Parameten Modal Load Case Time History Motor Type Number of Output Time Sings	MODAL Transient	4899	Atvanced	Acceleration Other Parameters Modal Load Care Time History Motion Type Number of Output Time S	inges	MODAL Transient	4099	Adu
Acceleration U2 her Parameters Model Load Case Time Hatoy Mittion Type Number of Output Time Steps Output Time Steps	MODAL Transent	4099 0.02	Delete Advanced	Acceleration Other Parameters Modal Load Case Time Hatory Motion Type Namber of Output Time Sign Size	un Inge	MODAL Transient	4899 0.02	Add

Datos de carga para el sismo Ica 2007 para el ATHL

Load Case Name		ATHL ICA 07 CASO I	1	Design_	Load Case Name		ATHL ICA 07 CASO		Design
Load Case Type/Subtype	Time History	 ✓ Linear I 	Modal v	Notes	Load Case Type/Subtype	Time History	✓ Linear	Modal ~	Notes
Mass Source		Previous (PESO SIS	MICO)		Mass Source		Previous (PESO SIS	(MICO)	
Analysis Model		Default			Analysis Model		Default		
ads Applied					Loads Applied				
Load Type	Load Name	Function	Scale Factor	0	Load Type	Load Name	Function	Scale Factor	0
Acceleration V U1		SISMO ESCALADO	0.01	Add	Acceleration U2		SISMO ESCALADO	0.01	Add
Acceleration U2		SISMO ESCALADO	0.01	Delete	Acceleration V U1		SISMO ESCALADO	0.01	Delete
				Advanced					Advance
her Parameters					Other Parameters				
Modal Load Case		MODAL	~		Modal Load Case		MODAL	~	
Time History Motion Type		Transient	~		Time History Motion Type		Transient	~	
Number of Output Time Steps			21806		Number of Output Time Steps			21806	
Output Time Step Size			0.01	sec	Output Time Step Size			0.01	sec
Modal Damping Con	etant at 0.05		Modify/Show		Modal Damping Cor	nstant at 0.05		Modify/Show	

Figura 222

Ingreso de datos de carga para el R=1, ATHL

				General			
Load Case Name	RX=1		Design	Load Case Name	RY=1		Desig
Load Case Type	Response Spectrum		Notes	Load Case Type	Response Spectrum	n 🗸	Note
Mass Source	Previous (PESO SISM	MICO)		Mass Source	Previous (PESO SI	ISMICO)	
Analysis Model	Default			Analysis Model	Default		
ads Applied				Loads Applied			
Load Type Load Na	e Function	Scale Factor	0	Load Type Loa	d Name Function	Scale Factor	0
Acceleration U1	R=1X ~ 9	9.8067	Add	Acceleration V U1	E030 R=1	9.8067	Add
			Delete				Delet
			Advanced				U Adva
her Parameters				Other Parameters			
her Parameters Modal Load Case	MODAL			Other Parameters Modal Load Case	MODAL		
her Parameters Modal Load Case Modal Combination Method	MODAL CQC			Other Parameters Modal Load Case Modal Combination Method	MODAL. CQC		
her Parameters Model Load Case Model Combination Method	MODAL CQC Rigid Frequency, 11			Other Parameters Modal Load Case Modal Combination Method	MODAL COC Rigid Frequency, f1		
her Parameters Model Load Case Model Combination Method	MODAL COC Rigid Frequency, f1 Rigid Frequency, f2			Other Parameters Modal Load Case Modal Continuation Method include Rigid Response	MODAL, CQC Rigid Frequency, 11 Rigid Frequency, 12		
her Parameters Modal Load Case Nodal Combination Method Include Rigid Response	MODAL COC Rigid Frequency, 11 Rigid Frequency, 12 Petrickle + Rigid Type			Other Parameten Modal Load Case Modal Continuation Method Include Rigid Response	MODAL CQC Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type		
her Parameters Model Load Case Model Combination Method Include Rigid Response Earthquake Duration, 1d	MODAL COC Rigid Frequency, 11 Rigid Frequency, 12 Periodic + Rigid Type			Other Parameters Model Load Case Model Conductors Model Conductors Model Right Response Earthquarke Duration, M	MODAL COC Rigid Frequency, f1 Rigid Frequency, f2 Petrodic + Rigid Type		
her Parameters Model Lond Cene Model Combination Method Include Rigid Response Earthquarke Duration, Id Directional Combination Type	MODAL COC Rigid Frequency, 11 Rigid Frequency, 12 Petrodio + Rigid Type SRSS			Other Parameters Model Load Case Model Continuation Method Holude Rigid Response Earthquelle Duration to Directional Continuation Type	MODAL COC Rigid Frequency, 11 Rigid Frequency, 12 Petrodic + Rigid Type SRSS		
her Parameter Model Construction Method I histoide Rigid Response Earthquarke Duration, tof Directional Combination Type Absolute Directional Combination	MODAL COC Rigid Frequency, f1 Rigid Frequency, f2 Petrodo + Rigid Type SRSS Icale Faster			Other Parameters Modal Conditionation Method Include Report Earthquicke Ducations M Directional Continuation Type Acaded Directional Continues	MODAL COC Right Presency, 11 Right Presency, 12 Petrodic + Right Type SRSS atom Scale Factor		
her Paramites Model Cael Model Constitution Mehod Estimation Mehod Estimation Epide Registrees Estimation Type Absolute Directional Conference Model Deleting Construct at	MODAL COC Rigol Presumory, f1 Rigol Presumory, f2 Penodo + Rigol Type SRSS Cole Factor IOS	V V Modfy/Show		Other Farmeter Model Load Cate Model Contention Method Exchange Constructions M Detectional Contention Type Alexada Desterioria Content Model Desterioria Content Model Desterioria Content	MODAL COC Rigid Frequency, 11 Rigid Frequency, 12 Petodic + Rigid Type SRS atom Scale Factor # # 0.05	v v	

Figura 223

Resultados del Análisis Tiempo Historia Lineal en XX

ANALISIS DINAMICO TIEMPO - HISTORIA XX										
Nivol	ESPECTRAL	ICA 2007		LIMA 1974		LIMA 1966				
niver	R=1	CASO 1	CASO 2	CASO 1	CASO 2	CASO 1	CASO 2			
TECHO	0.0013603	0.0000055	0.0000077	0.000008	0.000007	0.00000431	0.000104			
NIVEL 4	0.0020265	0.0000089	0.0000135	0.000013	0.000013	0.00000769	0.000090			
NIVEL 3	0.0022474	0.0000098	0.0000166	0.000014	0.000016	0.00000831	0.000065			
NIVEL 2	0.0020511	0.0000092	0.0000172	0.000013	0.000017	0.0000738	0.000038			
NIVEL 1	0.0011215	0.0000052	0.0000117	0.000007	0.000011	0.00000431	0.000014			

Resultados del Análisis Tiempo Historia Lineal en YY

ANALISIS D	ANALISIS DINAMICO TIEMPO - HISTORIA YY										
Nivel	ESPECTRAL	ICA 2007		LIMA 1974		LIMA 1966					
	R=1	CASO 1	CASO 2	CASO 1	CASO 2	CASO 1	CASO 2				
ТЕСНО	0.0013603	0.00000554	0.00000769	0.00000769	0.00000677	0.00000615	0.0002020				
NIVEL 4	0.0020265	0.00000892	0.00001354	0.00001292	0.00001262	0.00001200	0.0001820				
NIVEL 3	0.0022474	0.00000985	0.00001662	0.00001446	0.00001600	0.00001569	0.0001430				
NIVEL 2	0.0020511	0.00000923	0.00001723	0.00001323	0.00001662	0.00001723	0.0000920				
NIVEL 1	0.0011215	0.00000523	0.00001169	0.00000738	0.00001077	0.00001108	0.0000360				

Figura 225

Determinando el Sismo	para el Diseño en	ı el ATHNL e	en X y Y
-----------------------	-------------------	--------------	----------

ANALISIS DINAI	ANALISIS DINAMICO TIEMPO - HISTORIA XX									
	ICA 2007		LIMA 1974		LIMA 1966					
Nivel	CASO 1	CASO 2	CASO 1	CASO 2	CASO 1	CASO 2				
TECHO	0.004	0.006	0.006	0.005	0.003	0.076				
NIVEL 4	0.004	0.007	0.006	0.006	0.004	0.044				
NIVEL 3	0.004	0.007	0.006	0.007	0.004	0.029				
NIVEL 2	0.005	0.008	0.006	0.008	0.004	0.019				
NIVEL 1	0.005	0.010	0.007	0.010	0.004	0.012				

ANALISIS DINAMICO TIEMPO - HISTORIA YY							
Nivel	ICA 2007		LIMA 1974		LIMA 1966		
	CASO 1	CASO 2	CASO 1	CASO 2	CASO 1	CASO 2	
TECHO	0.004	0.006	0.006	0.005	0.005	0.148	
NIVEL 4	0.004	0.007	0.006	0.006	0.006	0.090	
NIVEL 3	0.004	0.007	0.006	0.007	0.007	0.064	
NIVEL 2	0.005	0.008	0.006	0.008	0.008	0.045	
NIVEL 1	0.005	0.010	0.007	0.010	0.010	0.032	

Sismo X, Casos de carga para Análisis THNL

oad Cases			Click to:
Load Case Name	Load Case Type		Add New Case
RY=1	Response Spectrum		Add Copy of Case
ATHL LIMA 66 CASO I	Linear Modal History		Modify/Show Case
ATHL LIMA 66 CASO II	Linear Modal History		Delete Case
ATHL LIMA 74 CASO I	Linear Modal History	*	Delete Case
ATHL LIMA 74 CASO II	Linear Modal History		Show Load Case Tree
ATHL SISMO ICA 07 CASO	Linear Modal History	¥	
ATHL SISMO ICA 07 CASO	I Linear Modal History		
ATHNL LIMA 66 DISEÑO X	Nonlinear Modal History (FNA)		OK
ATHNL SISMO ICA 07 DISE	ÑO Y Nonlinear Modal History (FNA)		Cancel
Load Case Type/Subtype Time H Mass Source Analysis Model	Istory Vinolinear Modal (FNA) Previous (PESO SISMICO) Default	V Notes	
al Conditions			
 Zero Initial Conditions - Start from Un Continue from State at End of Nonlin Nonlinear Case 	stressed State ear Case (Loads at End of Case ARE Included)		
ids Applied			
Load Type Load Nar	ne Function Scal		
Acceleration U1	V SISMO ESCALADO DE LIMA 1966 EW 0.01	Add	
		Derete	
		Advanced	
er Parameters			
er Parameters Modal Load Case	MODAL		
er Parameters Modal Load Case Number of Output. Time Steps	MODAL 21806		
er Parameters Modal Load Case Number of Output Time Steps Output Time Step Size	MODAL 21806	9 / 018 / 028	
er Parameters Modal Load Case Number of Output Time Steps Output Time Step Sze Modal Damping Constant et 1	MODAL 21806 0.01 105 Modify/Show.	×	

Figura 227

Sismo X, ATHNL

Pseudo Spectral aceleration PSA en X, ATHNL

Sismo Y, Casos de carga para Análisis THNL

Sismo Y, ATHNL

Figura 231

Pseudo Spectral aceleration PSA en Y, ATHNL

Resultados del Análisis T. Historia No lineal

Figura 232

Resultados de Análisis tiempo historia No lineal

	CONTROL DE DERIVAS						
	SISMO DE DISEÑO X-X, (CASO2-EW)						
Nivel	Carga Caso/Combo	UX (m)	DESPLAZ.RELATIVO	ALTURA DE ENTREPISO	DERIVA INELASTICA	COMPROBACION<= 0.007	
TECHO	SISMO DINX	0.0000350	0.000004	3.25	0.0000012	CORRECTO	
Nivel 4	SISMO DINX	0.0000310	0.000007	3.25	0.0000022	CORRECTO	
Nivel 3	SISMO DINX	0.0000240	0.00009	3.25	0.0000028	CORRECTO	
Nivel 2	SISMO DINX	0.0000150	0.00009	3.25	0.0000028	CORRECTO	
Nivel 1	SISMO DINX	0.0000060	0.000006	3.25	0.0000018	CORRECTO	

	CONTROL DE DERIVAS						
	SISMO DE DISEÑO Y-Y, (CASO 2-EW)						
Nivol	Carga Caso/Combo	LIV (m)		ALTURA DE	DERIVA		
Niver	Carga Caso/Combo		DESPLAZ.RELATIVO	ENTREPISO	INELASTICA	COMPROBACIÓNS- 0.007	
TECHO	SISMO DINY	0.00022000	0.000022	3.25	0.0000068	CORRECTO	
Nivel 4	SISMO DINY	0.00019800	0.000042	3.25	0.0000129	CORRECTO	
Nivel 3	SISMO DINY	0.00015600	0.000056	3.25	0.0000172	CORRECTO	
Nivel 2	SISMO DINY	0.00010000	0.000061	3.25	0.0000188	CORRECTO	
Nivel 1	SISMO DINY	0.00003900	0.000039	3.25	0.0000120	CORRECTO	

4.4 Prueba Estadística

U Mann-Whitney. Si para dos grupos independientes existe una variación en la variable dependiente, la prueba U de Mann-Whitney compara estadísticamente la media. Puede demostrar si la distribución de la variable dependiente es igual para los dos grupos y, por lo tanto, para la misma población de esta manera.

Grupo 1: Los Resultados de Desplazamiento del Anál. Pushover

Grupo 2: Los Resultados de Desplazamiento del Anál. T. Historia.

4.5 Comprobación de Hipótesis

Hipótesis:

H0: No existe diferencia significativa en los resultados de desplazamiento del Anál. Pushover y T. Historia.

H1: Existe diferencia significativa en los resultados de desplazamiento del Anál. Pushover y T. Historia.

Aplicación: Comparar valores promedio de desplazamiento de ambos grupos.

Figura 233

Prueba de Kolmogórov-Smirnov para una muestra

			Desplazamientos	Tipo de Análisis
N			304	304
Parámetros normales ^{a,b}	Media		1413,29	1,50
	Desv. Desviación		1486,087	,501
Máximas diferencias	Absoluta		,326	,341
extremas	Positivo		,326	,341
	Negativo		-,213	-,341
Estadístico de prueba			,326	,341
Sig. asin. (bilateral) ^c			<.001	<.001
Sig. Monte Carlo	Sig.		,000	,000
(bilateral) "	Intervalo de confianza al	Límite inferior	,000	,000
	99%	Límite superior	,000	,000,

Del análisis estadístico de prueba se puede ver que se trata de datos no paramétricos que no cumple los supuestos de Distrib. Normal, Homocedasticidad, por lo que usaremos el Método estadístico No paramétrico de U Mann-Whitney para comparar ambos grupos.

Figura 234

Rangos promedio de los desplazamientos

	Tipo de Análisis	N	Rango promedio	Suma de rangos
Desplazamientos	Pushover	152	228,50	34732,00
	Tiempo Historia	152	76,50	11628,00
	Total	304		

Figura 235

Estadísticos de prueba

	Desplazamientos
U de Mann-Whitney	,000
W de Wilcoxon	11628,000
Z	-15,119
Sig. asin. (bilateral)	<.001

a. Variable de agrupación: Tipo de Análisis

De las estadísticas de prueba No paramétrico de U Mann-Whitney, realizada con ambos grupos se puede ver que con una probabilidad de error menor a 0.00001%, existe diferencia muy significativa en los resultados de desplazamiento del Anál. Pushover y T. Historia.

Con los datos analizados en ambos grupos de desplazamiento del Anál. Pushover y T. Historia, se pudo demostrar que existe diferencia muy significativa en los resultados de desplazamiento del Anál. Pushover y T. Historia.

4.6 Discusión de Resultados

De la capacidad sismorresistente de la estructura del C.S. Conchopata y después del análisis Pushover según <u>SEAOC Visión 2000 Committe</u> se obtuvo los siguientes resultados:

- En la dirección X-X, se obtuvo el punto de demanda o agotamiento de la capacidad de DU=4.083977, FU=1487764 y el punto de fluencia efectiva de la estructura DY=2.354797, FY=1028093, y una sobre resistencia de R=1.4471 y una ductilidad de u=1. 73432.
- En la dirección Y-Y, se obtiene el punto de demanda o agotamiento de la capacidad, DU=4.975158, FU=1686619 y el punto de fluencia efectiva de la estructura DY=2.413109, FY=1009363, y una sobre resistencia R=1.6710 y una ductilidad de u=2. 06172.

Del análisis de los niveles de desempeño del C.S. Conchopata según <u>SEAOC Visión</u> 2000 Committe en la Dirección X-X y Y-Y se obtuvo los siguientes resultados:

- Con un sismo de DISEÑO FRECUENTE (43 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de la estructura totalmente Operacional, llegando a un objetivo BÁSICO según los niveles de desempeño sísmico para edificios (SEAOC Visión 2000 Committe).
- Con sismo de DISEÑO OCASIONAL (72 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de la estructura totalmente Operacional, llegando a un objetivo ESCENCIAL según los niveles de desempeño sísmico para edificios (SEAOC Visión 2000 Committe).
- Con sismo de DISEÑO RARO (475 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de la estructura Operacional, llegando a un objetivo ESCENCIAL según los niveles de desempeño sísmico para edificios (SEAOC Visión 2000 Committe).
- Con sismo de **DISEÑO MUY RARO** (970 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de la estructura

totalmente Operacional, llegando a un objetivo BÁSICO según los niveles de desempeño sísmico para edificios (SEAOC Visión 2000 Committe).

De la capacidad sismorresistente de la estructura después del análisis Pushover según el análisis de los niveles según <u>ASCE-SEI41-13</u> en la Dirección X-X y Y-Y se obtuvo los siguientes resultados:

- En la dirección X-X, se obtuvo el punto de demanda o agotamiento de la capacidad DU=4.083977, FU=1487764 y el punto de fluencia efectiva de la estructura DY=2.354797, FY=1028093, y una sobre resistencia de R=1.4471 y una ductilidad de u=1. 73432.
- En la dirección Y-Y, se obtuvo el punto de demanda o agotamiento de la capacidad DU=4.975158, FU=1686619 y el punto de fluencia efectiva de la estructura DY=2.413109, FY=1009363, y una sobre resistencia de R=1.6710 y una ductilidad de u=2. 06172.

Del análisis los niveles de desempeño según <u>ASCE-SEI41-13</u> en la dirección X-X y Y-Y se obtuvo los siguientes resultados:

- Con un nivel de amenaza sísmica FRECUENTE (50% en 50 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de (a). OPERACIONAL (1-A), según los Objetivos de desempeño ASCE-SEI41-13.
- Con un nivel de amenaza sísmica OCASIONAL (20% en 50 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de (e). OPERACIONAL (1-A), según los Objetivos de desempeño ASCE-SEI41-13.
- Con un nivel de amenaza sísmica RARO (5% en 50 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño (k) de SEGURIDAD DE VIDA (3-C), según los Objetivos de desempeño ASCE-SEI41-13. De la capacidad sismorresistente de la estructura después del análisis Pushover según el análisis de los niveles según <u>ATC-40</u> en la Dirección X-X y Y-Y se obtuvo los siguientes resultados:

- En la dirección X-X, se obtuvo el punto de demanda o agotamiento de la capacidad DU=4.083977, FU=1487764 y el punto de fluencia efectiva de la estructura DY=2.354797, FY=1028093, y una sobre resistencia de R=1.4471 y una ductilidad de u=1. 73432.
- En la dirección Y-Y, se obtuvo el punto de demanda o agotamiento de la capacidad DU=4.975158, FU=1686619 y el punto de fluencia efectiva de la estructura DY=2.413109, FY=1009363, y una sobre resistencia de R=1.6710 y una ductilidad de u=2. 06172.

Del análisis los niveles de desempeño según <u>ATC-40</u> en la dirección X-X y Y-Y se obtuvo los siguientes resultados:

- Con un nivel de amenaza sísmica de Servicio (SE) (43 años) en la dirección X-X, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de SEGURIDAD DE VIDA (V), según los Objetivos de desempeño de seguridad básica (ATC-40,1996).
- Con un nivel de amenaza sísmica de Servicio (SE) (43 años) en la dirección Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de OPERACIONAL (V), según los Objetivos de desempeño de seguridad básica (ATC-40,1996)
- Con un nivel de amenaza sísmica de Diseño (DE) (72 años) en la dirección Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de OCUPACIÓN INMEDIATA (V), según los Objetivos de desempeño de seguridad básica (ATC-40,1996).

Conclusiones

- A. Conclusiones del Objetivo General:
- Se verificó el nivel de desempeño sísmica mediante el A.E. No lineal Push Over y Tiempo historia como método de evaluación rápida, concluyéndose que para el cálculo del sismo de diseño se emplearon los parámetros de la norma E.030; para los demás niveles se emplearon factores proporcionados por el ASCE-SEI41-13 y ATC-40. La norma E.030 fue esencial, ya que representa las condiciones sísmicas locales de manera más directa y precisa.
- El centro de salud de Conchopata, construido con pórticos de concreto armado, ha logrado un desempeño sísmico ACEPTABLE en ambas direcciones (X, Y); según la norma peruana E.030 y los códigos de diseño como FEMA.
- La formación y evolución de las articulaciones plásticas a lo largo de este proceso fue clave para determinar la curva de capacidad de la estructura.
- La curva de capacidad obtenida en el análisis Pushover del C.S. de Conchopata, relación entre el desplazamiento en el techo de la estructura y el cortante en la base, fueron construidas a partir de la identificación de las articulaciones plásticas formadas en los diferentes niveles de carga.
- Del análisis se concluye que es conveniente reforzar de manera puntual la estructura debido a su incapacidad en algunos elementos estructurales. Las columnas que experimentaron los primeros mecanismos de falla (rótulas plásticas). El objetivo de desempeño deseado, es decir, la seguridad de vida para un sismo de diseño, fue confirmado al examinar la estructura reforzada.
- Las articulaciones plásticas han sido imprescindibles para el análisis Pushover en el C.S. Conchopata ya que permitió modelar el comportamiento no lineal de la estructura.
- Finalmente, los niveles de desempeño sísmico de la estructura del C.S.
 Conchopata, los niveles de amenaza sísmica y los objetivos de desempeño para

la estructura del C.S. Conchopata han sido los criterios fundamentales para determinan el análisis estático no lineal o Pushover en la estructura.

- Para el ATHNL se utilizó como complemento y a manera de verificación, con acelerogramas reales de sismos registrados por RENACIS de la red Acelerográfica de la CISMID, para simular la respuesta dinámica de la estructura a lo largo del tiempo.
- Este método permitió capturar los efectos de la no linealidad del material y la geometría de la estructura del C.S. Conchopata de manera más realista, ya que considera la evolución de los daños a lo largo del evento sísmico.
- Los resultados del ATHNL, como las fuerzas cortantes en los elementos, en la Base y las Derv.∆s de entrepiso, resultaron menores que los resultados obtenidos en el análisis PUSHOVER.
- Los resultados del análisis pushover, como las fuerzas cortantes y desplazamientos máximos, fueron mayores que los obtenidos con el ATHNL, ya que el resultado es más real capturando completamente la demanda sísmica dinámica, cuyo resultado fue mucho menor que las fuerzas monotónicas aplicadas.
- A diferencia del análisis pushover que utiliza cargas laterales incrementales monotónicas, el **ATHNL** simula la respuesta de la estructura a registros sísmicos reales, considerando la variación temporal de las cargas.
- Por lo tanto, los resultados de ambos métodos pueden diferir significativamente, siendo el ATHNL generalmente más conservador en la estimación de las solicitudes sísmicas.
- B. Conclusiones del Objetivo específico 1:
- Se definió la linealidad de los materiales como diseño estructural convencional para el C.S. Conchopata como proceso de diseño sismorresistente con los modelos de idealización Esfuerzo-Deformación del Acero y Concreto No Confinado-Modelo de Hognestad convencional según

E.030. Aplicándosele las penalidades por irregularidad en planta y en elevación durante el proceso de diseño del C.S. Conchopata para Ip (Irregularidad en planta) = 1, y Ia (Irregularidad en elevación) = 1, la estructura adopto la forma del terreno cortada en sus extremos en planta, del análisis se concluyó que la estructura del C.S. Conchopata es una estructura regular tanto en planta como en elevación.

- Para la no linealidad de los materiales se trabajó con los modelos de Concreto Confinado del Modelo de Kent Park y Concreto Confinado del Modelo de Mander, concluyéndose que mientras que el modelo de Kent y Park es más limitado en su aplicación a geometrías específicas, como columnas cuadradas o rectangulares y no considera un aumento en la resistencia, sin embargo, el modelo de Mander ofrece una mayor flexibilidad y una representación más completa del efecto del confinamiento en el concreto. Este modelo es más versátil y se puede aplicar a secciones circulares, rectangulares o cuadradas. Es útil en situaciones donde se necesita un análisis más detallado del comportamiento del concreto bajo diferentes condiciones de carga y geometría.
- Los parámetros para el análisis sismorresistente de la norma E.030, fueron Z=0.25, U=1.5 y S=1.2 usados en el cálculo la demanda sísmica, el factor de reducción de fuerzas sísmicas "R" se consideró igual a 1. Para iniciar con el análisis no lineal.
- La estructura del C.S. Conchopata cumplió con los parámetros de estructuración resultando sus 2 primeros modos de vibración traslacionales y el 3er modo resulto rotacional, obteniéndose como primer periodo de vibración de 0.302 segundos.
- Para el análisis Pushover se usó el *FEMA*, donde como condición para la aplicación del método es que sea una estructura regular y su periodo de vibración fundamental no exceda de un segundo, la estructura del C.S.

Conchopata obtuvo como primer periodo de vibración de 0.302 segundos menor a uno. Esto fue crucial para continuar con nuestro posterior análisis.

- C. Conclusiones para el Objetivo específico 2:
- Al elaborar la curva capacidad con el método no lineal de Push Over concluyéndose de que la capacidad de la estructura del C.S. de Conchopata NO FUE SUPERADA POR LA DEMANDA, ya que el desempeño sísmico de ambas direcciones de análisis (X, Y) cumpliéndose con los objetivos de comportamiento deseados para la estructura.
- Se le aplico las cargas lateral incrementales a la estructura el C.S. Conchopata hasta alcanzar su colapso. Este método no considero la variación de la respuesta a lo largo del tiempo, sino que proporciona una estimación de la capacidad última de la estructura. La formación y evolución de las articulaciones plásticas a lo largo de este proceso fue clave para determinar la curva de capacidad de la estructura.
- Con la rigidez lateral aumentada significativamente en el reforzamiento de la estructura; se redujo el tiempo de vibración y las derivas máximas de piso; se cumplió con los objetivos de desempeño para la estructura del C.S. de Conchopata. Extraídas de la evaluación de los niveles de desempeño de *FEMA* en las direcciones X-X y Y-Y.
- La estructura del C.S. de Conchopata soportará movimientos moderados y severos, que pueden ocurrir en el sitio durante su vida de servicio, experimentando posibles daños dentro de sus límites aceptables que podrán requerir una reparación previa a futuro para la recuperación del edificio.
- Las columnas presentaron mecanismos de falla con anticipación; esto indica que la estructura carece de una capacidad de ductilidad adecuada, una característica esencial para disipar energía en el rango no lineal.
- Debido a que en la dirección X-X hay elementos con mayor sección transversal que en la dirección Y-Y, es que la estructura tuvo una mejor capacidad de

desempeño en la dirección X-X. Determinar la capacidad de la estructura en ambas direcciones de análisis fue necesario y útil, ya que, a pesar de su regularidad y simetría, el Espectro y la Curva de Capacidad calculados tienen características distintas.

D. Conclusiones para el Objetivo específico 3:

 Se determino el punto de desempeño según <u>ASCE-SEI41-13</u> de la Curva Capacidad con el método no lineal Pushover para el C.S. Conchopata obteniéndose los siguientes resultados:

En la dirección X-X, se obtuvo el punto de demanda o agotamiento de la capacidad DU=4.083977, FU=1487764 y el punto de fluencia efectiva de la estructura DY=2.354797, FY=1028093, y una sobre resistencia de R=1.4471 y una ductilidad de u=1. 73432.

En la dirección Y-Y, se obtuvo el punto de demanda o agotamiento de la capacidad DU=4.975158, FU=1686619 y el punto de fluencia efectiva de la estructura DY=2.413109, FY=1009363, y una sobre resistencia de R=1.6710 y una ductilidad de u=2.06172.

E. Conclusiones para el Objetivo específico 4:

- Se estableció los niveles de desempeño según <u>SEAOC Visión 2000 Committe</u> de la Curva Capacidad con el método no lineal Pushover para el C.S. Conchopata obteniéndose los siguientes resultados:
- DISEÑO FRECUENTE (43 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de la estructura totalmente Operacional, llegando a un objetivo BÁSICO según los niveles de desempeño sísmico para edificios (SEAOC Visión 2000 Committe).
- DISEÑO OCASIONAL (72 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de la estructura totalmente Operacional, llegando a un objetivo ESENCIAL según los niveles de desempeño sísmico para edificios (SEAOC Visión 2000 Committe).

- DISEÑO RARO (475 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de la estructura Operacional, llegando a un objetivo ESENCIAL según los niveles de desempeño sísmico para edificios (SEAOC Visión 2000 Committe).
- DISEÑO MUY RARO (970 años) en la dirección X-X y Y-Y, la estructura del C.S. de Conchopata adquiere un nivel de desempeño de la estructura totalmente Operacional, llegando a un objetivo BÁSICO según los niveles de desempeño sísmico para edificios (SEAOC Visión 2000 Committe).

Recomendaciones

- A. Recomendaciones del Objetivo General:
- En la etapa de diseño siempre se debe buscar una estructuración en base a columna fuerte-vigas débil, así como también darle una mayor rigidez a los elementos estructurales que se ubican en dirección de menor luz, vista en planta, para compensar las rigideces en ambas direcciones de la estructura, evitar las posibles torsiones accidentales que se puedan generan.
- Verificar los controles de diseño sismorresistente del A.E.L de C°A° según la norma sismorresistente E.030 antes de iniciar con la aplicación del análisis de desempeño de la estructura, obteniendo los diseños de acero en vigas, columnas y muros estructurales.
- Verificar el peso para realizar el cálculo de los coeficientes, a partir de ello realizar AENL, y con los coeficientes repartir la Fuerza cortante hasta hacer colapsar al edificio, para luego verificar la curva de la demanda y partir de él determinar el desempeño de la estructura en ambas direcciones.
- Se recomienda analizar bien el método que se va a utilizar antes de aplicar los fact. de carga lateral estipulados por FEMA-Pushover (Método de los coef. de desplazamientos FEMA356/Método de espectro capacidad ATC 40).
- Debemos conocer las respuestas de los componentes de vigas, columnas y muros estructurales que van más allá del rango lineal para definir y asignar las rótulas plásticas de los elementos estructurales de acuerdo a su tipo de falla, estos valores del momento rotación del modelo de la rótula en vigas, columnas y muros estructurales son obtenidos por medio de pruebas experimentales o de las Tablas ASCE/SEI 41-13, también conocidas como relaciones generalizadas fuerza-deformación.
- Debemos conocer las respuestas de los componentes de vigas, columnas y muros estructurales que van más allá del rango lineal para definir y asignar las rótulas plásticas de los elementos estructurales de acuerdo a su tipo de falla,

estos valores del momento rotación del modelo de la rótula en vigas, columnas y muros estructurales son obtenidos por medio de pruebas experimentales o de las Tablas **ASCE/SEI 41-13**, también conocidas como relaciones generalizadas fuerza-deformación.

- Con el desarrollo del momento rotación de todos los elementos estructurales se recomienda obtener la curva capacidad de la estructura en ambas direcciones. A través del comportamiento de las rótulas plásticas es que se obtuvo la curva capacidad de la estructura.
- Finalmente recomendamos y sugerimos a los estudiantes, docentes e investigadores en general de continuar con la mejora y la aplicación de esta investigación del análisis de Desempeño Sísmico de Centros de Salud mediante el Análisis Estático no lineal Pushover y Tiempo Historia como método de evaluación rápida.

B. Recomendaciones del Objetivo específico 1:

 Al inicio siempre se debe hacer un análisis de los modelos de idealización de curvas de esfuerzo-deformación del acero, concreto confinado y no confinado y sus propiedades, dentro del análisis lineal y no lineal de materiales.

C. Recomendaciones del Objetivo específico 2:

 Revisar los diagramas de momento curvatura y rotación, deformación máxima, ductilidad por rotación y deflexión de las secciones de las componentes estructurales vigas (reforzada y sobredoradas), columnas y placas. Con el fin de maximizar la ductilidad y la capacidad a flexión de la estructura, se busca alcanzar su máximo potencial. El fundamento del análisis dinámico no lineal y estático no lineal es la relación momento curvatura.

D. Recomendaciones del Objetivo específico 3:

 Recomendamos asegurar de que el modelo estructural refleje adecuadamente las características geométricas y materiales de la edificación. Utilice un modelo que represente correctamente los elementos estructurales y sus interacciones y defina las propiedades del concreto y el acero, considerando sus comportamientos no lineales. Esto incluye la curva esfuerzo-deformación para ambos materiales, que influye en la respuesta de la estructura bajo cargas sísmicas.

E. Recomendaciones del Objetivo específico 4:

- Compara la curva de capacidad obtenida a partir del análisis pushover con un espectro de demanda sísmica apropiado para la zona de intervención. Esto te ayudará a identificar si la estructura cumple con los requisitos establecidos para los diferentes niveles de desempeño.
- Localiza el punto donde la curva de capacidad intercepta el espectro de demanda. Este punto indica el nivel máximo de carga sísmica que puede soportar la estructura sin comprometer su integridad.

Referencias

- Hammal, S., Bourahla, N., & Laouami, N. (2020). *Revista de ingeniería civil.* 6(6), 1124–1135.
- Handana, M. A. P., Karolina, R., & Steven. (2020). *Machine Translated by Google STUDI KASUS GOOGLE Machine Translated by Google*. 12(1), 1–2.
- Inamasu, H., & Lignos, D. G. (2022). Machine Translated by Google Estructuras de ingeniería empotradas mientras exhiben deformaciones inelásticas. 251.
- John, A., Hidayat, I., Conf, I. O. P., Medio, S., Terrestre, A., Pierre, A. J., & Hidayat,
 I. (2020). hormigón armado con análisis pushover Comportamiento sísmico de estructuras de hormigón armado con análisis pushover.
- Li, S., Xiang, P., Wei, B., & Yan, L. (2020). Un procedimiento estático no lineal para el diseño sísmico de Puentes irregulares simétricos. 2020.
- Pierre, A. J., & Hidayat, I. (2020). Seismic performance of reinforced concrete structures with pushover analysis. *IOP Conference Series: Earth and Environmental Science*, 426(1). https://doi.org/10.1088/1755-1315/426/1/012045
- Saeid Foroughi a, y S. B. Y. a. (2020). Machine Translated by Google Investigación del comportamiento no lineal de muros de cortante de hormigón armado de alta ductilidad Machine Translated by Google. 04(02), 116–128.
- Sampieri, D. R. H. (Ed.). (2014). *Dr. Roberto Hernández Sampieri* (6ta Edició). McGRAW-HILL.iMexicana, Miembro de la Cámara Nacional de la Industria Editorial.
- Seong, D., Kim, T., Oh, M., & Shin, H. (2011). Inelastic Performance of High-Strength

Concrete Bridge Columns under Earthquake Loads. 9(2), 205–220.

- Suwondo, R., & Alama, S. (2020). Evaluación sísmica de pórticos resistentes a momento de hormigón armado mediante análisis pushover Evaluación sísmica de pórticos resistentes a momento de hormigón armado mediante análisis pushover. 0–7.
- Cagua, B. &. (2023). Análisis Estático No Lineal de Pórticos de Acero empleando OpenSees y CEINCI LAB. X. *zenodo*.7504018., 87-101.
- Quispe Cartolin, P. J. (2021). Comparación entre análisis dinámico tiempo-historia en sismos frecuentes y análisis espectral para un edificio de vivienda de 14 pisos. Repositorio Institucional de la PUCP, 250.
- James A. O'Rourke, R. A. (1995). Visión 2000. Asociación de Ingenieros Estructurales de California (SEAOC). 120.

Apéndice

Figura 236

Operacionalización de Variables

Variable	Definición Conceptual	Dimensiones	Indicadores	Escala de Medición
V2. Dependiente X	Análisis estático no lineal (Pushover), "Consiste en la aplicación de fuerzas laterales incrementales a una estructura para visualizar su probable desempeño ante acciones sísmicas" (Cagua, 2023, pp. 87-101). Tiempo historia, "Este método simula la respuesta de una estructura a lo largo del tiempo utilizando registros de aceleración sísmica específicas. Se calcula la	 Modelo Estructural según la Norma sismorresistente E.030 y el FEMA. 	 Materiales de los elementos estructurales (linealidad (Asl, Ast)). Secciones de los elementos (no linealidad geométrica) Materiales de los elementos estructurales no linealidad de materiales (rótulas plásticas)) 	Numérico Variable continua
ente Y	respuesta de la estructura en cada instante" (Quispe Cartolin, 2021, pág. 100). Desempeño sísmico, "El desempeño sísmico implica evaluar la respuesta de las edificaciones ante distintos	 Análisis estático no lineal (Pushover) y Tiempo historia. 	 Curva Capacidad Pushover Espectro de registro sísmico (Desplazamiento y aceleraciones de entrepiso) 	Numérico Variable continua
V2. Dependi	niveles de movimiento del terreno, estableciendo criterios para clasificar su comportamiento" (James A. O'Rourke, 1995, pág. 80).	 Evaluación y Análisis por Desempeño de la estructura. 	 Espectro Objetivo Curva de desempeño Puntos de desempeño sísmico 	Numérico Variable continua

Matriz de consistencia

Problema General	Objeto General	Hipótesis General	Variables e indicadores	Metodología
• ¿Cuál es el nivel de desempeño sísmico mediante el análisis estático no lineal Push Over y Tiempo historia como método de evaluación rápida en los proyectos de salud en Ayacucho, 2024?	• Verificar el nivel de desempeño sísmico en los proyectos de salud en Ayacucho, como método de evaluación rápida frente a un sismo aplicando el Análisis estático no lineal Push Over y tiempo historia.	• El nivel de desempeño sísmico contribuye técnicamente en los proyectos de salud en Ayacucho, como método de evaluación rápida frente a un sismo aplicando el Análisis estático no lineal Push Over y tiempo historia.	Variable independiente X: •Análisis estático no lineal (Pushover) y Tiempo historia Indicador: •Materiales de los elementos estructurales (linealidad (Asl, Ast)). •Secciones de los elementos (no linealidad geométrica) •Materiales de los elementos estructurales no linealidad de materiales (rótulas plásticas)) •Curva Capacidad Pushover •Espectro de registro sísmico (Desplazamiento y aceleraciones de entrepiso).	Enfoque: Investigación cuantitativa. Tipo: Aplicativa-Tecnológica Nivel: Descriptivo-Explicativo Diseño de investigación: No experimental de Tipo Transversal. Método: Lógico-Deductivo Universo: Todos los proyectos de los establecimientos de salud en Ayacucho.

Objetivos Específicos

Hipótesis Específica

	٠
• ¿De qué manera la linealidad, no	f
linealidad fisicade los materiales como	1
diseño estructural convencional en los	e
proyectos de salud en Ayacucho, será	ŀ
un factor determinante en el análisis	4
por desempeño sísmico en los	•
proyectos de salud en Ayacucho, 2024?	e
• ¿Sera posible encontrar curva	e
capacidad con el método no lineal de	ŀ
Push Over en los proyectos de salud	•
en Ayacucho, 2024?	C
• ; Sera posible determinar el espectro	1
capacidad con el método tiempo	ł
historia en los provectos de salud en	•
Avacucho, 2024?	Ċ
• : Sera posible el punto de	C
desempeño de curva canacidad con el	(
métada na lingal de Push Over	r
	F
sismico en los proyectos de salud en	2
Ayacucho, 2024?	•
• ¿Sera posible establecer los niveles de	Ċ
desempeño de curve conecidad con el	

desempeño de curva capacidad con el método no lineal de Push Over en la evaluación por desempeño sísmico en le proyectos de salud en Ayacucho, 2024?

Definir la linealidad, no linealidad •La definición de la linealidad, no linealidad fisicade los materiales como diseño fisicade los materiales como diseño estructural convencional en los proyectos de salud en Ayacucho, 2024. Encontrar la curva capacidad con

el método no lineal de Push Over en los proyectos de salud en Ayacucho, 2024. Determinar el espectro capacidad con el método tiempo historia en los proyectos de salud en Ayacucho, 2024. Determinar el punto de desempeño de curva capacidad

con el método no lineal de Push Over y el tiempo histórico como método verificación en los proyectos de salud en Ayacucho, 2024

Establecer los niveles de desempeño de curva capacidad con el método no lineal de Push Over en los proyectos de salud en Ayacucho, 2024.

estructural convencional en los proyectos de salud es un factor determinante en la evaluación por desempeño sísmico en los proyectos de salud en Ayacucho, 2024. •La curva capacidad con el método no lineal de Push Over es un factor determinante en la evaluación por desempeño sísmico Over en los proyectos de salud en Ayacucho, 2024. •El espectro capacidad con el tiempo historia es un factor concluyente en la evaluación por desempeño sísmico en los proyectos de salud en Ayacucho, 2024.

•El punto de desempeño de curva capacidad con el método no lineal de Push Over y el tiempo histórico como método verificación es un factor determinante en la evaluación por desempeño sísmico en los proyectos de salud en Ayacucho, 2024. •Los niveles de desempeño de curva capacidad con el método no lineal de Push Over es un factor concluyente en la

evaluación por desempeño en los proyectos de salud en Ayacucho, 2024.

Variable dependiente Y: Desempeño sísmico Indicador: •Espectro Objetivo Curva de desempeño

•Puntos de desempeño sísmico.

por la misma población. N=n=1. El "Centro de salud de Conchopata" Técnicas de recolección •Análisis documental y sistemática de DIRESA y el GRA. •Observación no estructurada Instrumentos de recolección •Documentos del GRA y fuentes gubernamentales. •Libreta de campo, grabador y

Análisis e interpretación de datos • Software SPSS V.22. •Software para el Análisis Estructural para Edificaciones ETABS, ATC 40, FEMA, ASCE/SEI, VISIÓN 2000.

cámara de video.

La población N=1, todos los

proyectos de salud en

Ayacucho de tipología

La muestra está constituida

Población:

vertical.

Muestra:

Plano de ubicación de calicatas

Plano en planta y secciones AA-BB

Plano Perfil estratigráficos AA-BB

Plano Geológico Local de Ayacucho

Tomas fotográficas de la exploración de suelos

